基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真

1.算法运行效果图预览

 

 

 

 

 

2.算法运行软件版本

matlab2022a

 

 

3.算法理论概述

       自编码器(Autoencoder)是一种深度学习模型,可以通过无监督学习的方式来学习数据的低维表示。64QAM星座图整形调制解调通信系统是一种数字通信系统,可以在有限的带宽资源下实现高速数据传输。

 

 

 

4.4 实现过程

       首先,需要对输入的星座图数据进行预处理,包括数据格式转换、归一化等。预处理过程可以提高模型的鲁棒性和准确性。接下来,需要利用已知的星座图数据集对Autoencoder自编码器进行训练。在训练过程中,需要选择合适的损失函数和优化算法,以提高模型的准确性和泛化能力。        在模型训练完成后,需要利用测试数据集对模型进行测试。测试过程中,需要计算模型的准确性、召回率、精确度和F1值等指标,以评估模型的性能。

 

       在实际应用中,需要实现实时解调。这可以通过将训练好的模型部署到实际系统中来实现。在实时解调过程中,需要将接收到的信号进行采样和量化,并将量化后的信号输入到模型中进行解调。解调后的数据可以通过解码器进行解码,得到原始数据。

 

        基于Autoencoder自编码的64QAM星座图整形调制解调通信系统可以应用于数字通信系统中,特别是在高速数据传输场景下。该系统可以通过学习星座图整形和解调的映射关系,实现更加准确和鲁棒的调制和解调过程,提高数据传输的可靠性和速度。

 

4.部分核心程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
parse(p,varargin{:})
      layer.NoiseMethod = p.Results.NoiseMethod;
      layer.EbNo = p.Results.EbNo;
      layer.EsNo = p.Results.EsNo;
      layer.SNR = p.Results.SNR;
      layer.BitsPerSymbol = p.Results.BitsPerSymbol;
      layer.SignalPower = p.Results.SignalPower;
      layer.Name = p.Results.Name;
      if isempty(p.Results.Description)
        switch p.Results.NoiseMethod
          case 'EbNo'
            value = layer.EbNo;
          case 'EsNo'
            value = layer.EsNo;
          case 'SNR'
            value = layer.SNR;
        end
        layer.Description = "AWGN channel with " + p.Results.NoiseMethod ...
          + " = " + num2str(value);
      else
        layer.Description = p.Results.Description;
      end
      layer.Type = 'AWGN Channel';
  
      samplesPerSymbol = 1;
      if strcmp(layer.NoiseMethod, 'EbNo')
        EsNo = layer.EbNo + 10*log10(layer.BitsPerSymbol);
        layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);
      elseif strcmp(layer.NoiseMethod, 'EsNo')
        EsNo = layer.EsNo;
        layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);
      else
        layer.LocalSNR = layer.SNR;
      end
    end
     
 ....................................................
    function dLdX = ...
        backward(layer, X, Z, dLdZ,memory)
  
       
      dLdX = dLdZ;
    end
     
    function sl = saveobj(layer)
      sl.NoiseMethod = layer.NoiseMethod;
      sl.EbNo = layer.EbNo;
      sl.EsNo = layer.EsNo;
      sl.SNR = layer.SNR;
      sl.BitsPerSymbol = layer.BitsPerSymbol;
      sl.SignalPower = layer.SignalPower;
      sl.LocalEsNo = layer.LocalEsNo;
      sl.LocalSNR = layer.LocalSNR;
    end
     
    function layer = reload(layer,sl)
      layer.NoiseMethod = sl.NoiseMethod;
      layer.EbNo = sl.EbNo;
      layer.EsNo = sl.EsNo;
      layer.SNR = sl.SNR;
      layer.BitsPerSymbol = sl.BitsPerSymbol;
      layer.SignalPower = sl.SignalPower;
      layer.LocalEsNo = sl.LocalEsNo;
      layer.LocalSNR = sl.LocalSNR;
    end
  end
   
  methods (Static)
    function layer = loadobj(sl)
      if isstruct(sl)
        layer = AutoEncode_channel;
      else
        layer = sl;
      end
      layer = reload(layer,sl);
    end
  end
end

  

posted @   简简单单做算法  阅读(130)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下
点击右上角即可分享
微信分享提示