摘要:
设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$
证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列. 阅读全文
摘要:
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,({3}<{r^2}<{4})$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ|$的最大值_____ 阅读全文
摘要:
如图.在正方体$ABCD-A_1B_1C_1D_1$中,点$M,N$分别是直线$CD,AB$上的动点,点$P$是$\Delta A_1C_1D_1$内的动点(不包括边界),记直线$D_P$与$MN$所成角为$\theta$,若$\theta$的最小值为$\dfrac{\pi}{3}$,则点$P$的轨迹为( )
A.圆的一部分
B.椭圆的一部分
C.抛物线的一部分
D.双曲线的一部分 阅读全文
摘要:
(高考压轴题改编)如图,长方体$ABCD-A_1B_1C_1D_1$中,$AB=11,AD=7,AA_1=12.$一质点从顶点$A$设向$E(4,3,12)$遇到长方体的面反射(服从光的反射原理),将第$i-1$次到第$i$ 次反射点之间的线段记为$L_i(i=2,3,4),L_1=AE$,则$L_1:L_2:L_3:L_4=$______ 阅读全文
摘要:
(2016浙江填空压轴题)
已知实数$a,b,c$则 ( )
A.若$|a^2+b+c|+|a+b^2+c|\le1,$则$a^2+b^2+c^2<100$
B.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$
C.若$|a+b+c|+|a+b-c|\le1,$则$a^2+b^2+c^2<100$
D.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$ 阅读全文
摘要:
已知$f(x)=\ln x+ax+b (a>0)$在区间$[t,t+2],(t>0)$上的最大值为$M_t(a,b)$.若$\{b|M_t(a,b)\ge\ln2 +a\}=R$,则实数$t$的最大值为______ 阅读全文
摘要:
(2015浙江理科)
已知函数$f(x)=x^2+ax+b,(a,b\in R)$.记$M(a,b)$是$|f(x)|$在区间$[-1,1]$上的最大值.
(1)证明:当$|a|\ge2$时,$M(a,b)\ge2$;
(2)当$a,b$满足$M(a,b)\le 2$,求$|a|+|b|$的最大值. 阅读全文
摘要:
2017清华大学THUSSAT附加学科测试数学(二测)
$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$ 的值为_____
A.$\frac{15}{32}$
B.$\frac{15}{16}$
C.$\frac{8}{15}$
D.$\frac{16}{15}$ 阅读全文
摘要:
已知数列$\{\dfrac{1}{n}\}$的前$n$项和为$S_n$,则下面选项正确的是( )
A.$S_{2018}-1>\ln 2018$
B.$S_{2018}-1<\ln 2018$
C.$\ln2018$ 阅读全文
摘要:
若函数$f(x)=x^2+(\dfrac{1}{3}+a)x+b$在$[-1,1]$上有零点,则$a^2-3b$的最小值为_____ 阅读全文