摘要:
已知$a^2+b^2+c^2-ab-bc=1$求$c$的最大值______ 阅读全文
摘要:
已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 阅读全文
摘要:
(高考压轴题)证明以下命题:
(1)对任意正整数$a$都存在正整数$b,c(b{<}c)$,使得$a^2,b^2,c^2$成等差数列.
(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a_n,b_n,c_n$为正整数,且$a_n^2,b_n^2,c_n^2$成等差数列 阅读全文
摘要:
(05复旦)已知三角形$\Delta ABC$满足$\tan A:\tan B:\tan C=1:2:3$,求$\dfrac{AC}{AB}$____ 阅读全文
摘要:
已知实数$a,b,x,y$满足
\begin{equation}
\left\{ \begin{aligned}
ax+by &= 3 \\
ax^2+by^2&=7\\
ax^3+by^3&=16\\
ax^4+by^4&=42\\
\end{aligned} \right.
\end{equation}
求$ax^5+by^5$的值. 阅读全文
摘要:
设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则( )
A$a_{n+2}=5a_{n+1}-6a_n$
B$\{a_n\}$中的项都是整数
C$a_n>4^n$
D$\{a_n\}$中与2015最接近的项为$a_7$ 阅读全文
摘要:
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求证:$S_n>n-\dfrac{5}{2}$ 阅读全文
摘要:
(2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:
$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\sqrt{2}+x_n)\ge(\sqrt{2}+1)^n$ 阅读全文
摘要:
在锐角$\Delta ABC$中,角$A,B,C$所对的边分别为$a,b,c$,且满足$b^2-a^2=ac$,则$\dfrac{1}{\tan A}-\dfrac{1}{\tan B}$ 的取值范围是_____ 阅读全文
摘要:
已知向量$\overrightarrow{a},\overrightarrow{b}$满足:$|\overrightarrow{a}|=2$,向量$\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$夹角为$\dfrac{2\pi}{3}$
则$\overrightarrow{a}\cdot \overrightarrow{b}$的取值范围_____ 阅读全文