摘要:
若2018次方程$x^{2018}-4036x^{2017}+a_{2016}x^{2016}+\cdots+a_1x+a_0=0$ 有2018个正实数,
则对于所有可能的方程$\sum\limits_{i=0}^{2016}|a_i|$的最大值为_____ 阅读全文
摘要:
设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数,
满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\prod\limits_{i=1}^n{\dfrac{b_i}{a_i}}\le\dfrac{B}{A}$.
证明:$\prod\limits_{i=1}^n{\dfrac{b_i+1}{a_i+1}}\le\dfrac{B+1}{A+1}$(2018全国联赛加试题第一题) 阅读全文
摘要:
设$M=\{1,2,3\cdots,2010\}$,$A$是$M$的子集且满足条件:当$x\in A$时$15x\notin A$,则$A$中的元素的个数最多是______ 阅读全文
摘要:
已知椭圆焦点为$F_1(-1,0),F_2(1,0)$,且椭圆与直线$y=x-\sqrt{3}$相切,求
(1)椭圆的方程
(2)过$F_1$作两条相互垂直的直线$l_1,l_2$与椭圆相交于$P,Q,M,N$,求四边形$PNQM$的面积的最大值和最小值. 阅读全文
摘要:
(2013北大夏令营)
函数$y=x^2+ax+b$与坐标轴交于三个不同的点$A,B,C$,已知$\Delta ABC$的外心$P$在$y=x$上,求$a+b$的值. 阅读全文
摘要:
一次会议有1990位数学家参加,每人至少有过1327位合作者,求证:可以找到4位数学家,他们中每一个都合作过. 阅读全文
摘要:
设$S,T$是$R$的两个非空子集,如果存在一个从$S$到$T$的函数$y=f(x)$满足:
$1)T=\{f(x)|x\in S\};$
2)对任意$x_1,x_2\in S$,当${x_1}<{x_2}$时,恒有${f(x_1)}<{f(x_2)}$,称这两个集合"保序同构".则以下集合对不是"保序同构"的是( )
A.$S=N^+,T=N$
B.$S=\{x|-3\le x\le 8,x\ne 5\},T=\{y|-1\le y\le 2,y\ne0\}$
C.$S=\{x|{0}<{x}<{\pi}\},T=R$
D.$S=N,T=Q$ 阅读全文
摘要:
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$PF|$所有可能值。 阅读全文