摘要: 已知直线$l:x+y-\sqrt{3}=0$过椭圆$E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点且与椭圆$E$交于$A,B$两点,$P$为$AB$中点,$OP$的斜率为$\dfrac{1}{2}$. (1)求椭圆$E$的方程; (2)设$CD$是椭圆$E$的动弦,且其斜率为$1$,问椭圆$E$上是否存在定点$Q$,使得直线$QC,QD$的斜率分别为$k_1,k_2$满足$k_1+k_2=0?$若存在,求出$Q$的坐标;若不存在,请说明理由. 阅读全文
posted @ 2018-11-12 16:36 M.T 阅读(685) 评论(0) 推荐(0) 编辑