摘要:
已知$x^2+y^2+z^2=1$求$3xy-3yz+z^2$的最大值______ 阅读全文
摘要:
设二次函数$f(x)=ax^2+bx+c(a>0)$,方程$f(x)=x$的两根$x_1,x_2$满足$x_1,x_2\in(0,\dfrac{1}{a})$且$x_2>x_1$,
(Ⅰ)当$x\in(0, x_1)$时,求证:$ f(x)\in(x,x_1)$;
(Ⅱ)设函数$f(x)$的图象关于$x=x_0$对称,求证:$x_0<\dfrac{x_1}{2}$ 阅读全文
摘要:
已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$
1)证明:对任意$n\in N^+,a_n<5$
2)证明:不存在$M\le4$,使得对任意n,$M>a_n$ 阅读全文
摘要:
(2015浙江重点中学协作体一模) 设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动.那么这只青蛙从开始到停止,可能出现的不同跳法共_______种. 阅读全文
摘要:
(2018浙江省赛12题改编)
设$a\in R$,且对任意的实数$b$均有$\max\limits_{x\in[0,1]}|x^2+ax+b|\ge\dfrac{1}{4}$求$a$ 的范围. 阅读全文