摘要: 已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}\cdot a_n=\dfrac 1n$($n\in\mathbb N^*$). (1) 求证:$\dfrac{a_{n+2}}{n}=\dfrac{a_n}{n+1}$; (2) 求证:$2\left(\sqrt{n+1}-1\right)\leqslant \dfrac{1}{2a_3}+\dfrac{1}{3a_4}+\cdots+\dfrac{1}{(n+1)a_{n+2}}\leqslant n$. 阅读全文
posted @ 2018-04-11 21:07 M.T 阅读(398) 评论(1) 推荐(0) 编辑