MT【228】整数解的个数

求方程$x+y+z=24$的整数解的个数,要求$1\le x\le 5,12\le y\le 18,-1\le z\le12$

解:设$a_r$是方程$X+Y+Z=r$的满足上述要求的整数解的个数,那么$a_r$的母函数是
$f(x)=(x+x^2+x^3+x^4+x^4+x^5)(x^{12}+x^{13}+\cdots+x^{18})(x^{-1}+1+x+x^2+\cdots+x^{12})$
易知$f(x)=x^{12}\dfrac{(1-x^5)(1-x^7)(1-x^{14})}{(1-x)^3}$

$=x^{12}(1-x^5-x^7+x^{12}-x^{14}+x^{19}+x^{21}-x^{26})\sum\limits_{k=0}^{+\infty}{C_{k+2}^2x^k}$

故$x^{24}$前的系数$a_{24}=C_{14}^2-C_9^2-C_7^2+C_2^2=35$
注:
$C_\alpha^k=\dfrac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$
取$\alpha=-n$得$C_{-n}^k=\dfrac{-n(-n-1)\cdots(-n-k+1)}{k!}=(-1)^kC_{n+k-1}^k$
故$\dfrac{1}{(1-x)^n}=\sum\limits_{k=0}^{+\infty}{C_{-n}^k(-x)^k}=\sum\limits_{k=0}^{+\infty}{C_{n+k-1}^{n-1}x^k}$

 

posted @ 2018-10-16 08:39  M.T  阅读(680)  评论(0编辑  收藏  举报