MT【164】条件化简

(2017北大优特测试第9题)

已知实数 \(a_i\)(\(i=1,2,3,4,5\))满足 \((a_1-a_2)^2+(a_2-a_3)^2+(a_3-a_4)^2+(a_4-a_5)^2=1\),则 \(a_1-2a_2-a_3+2a_5\) 的最大值是_______
A.\(2\sqrt 2\)
B.\(2\sqrt 5\)
C.\(\sqrt 5\)
D.\(\sqrt{10}\)


提示:设$x=a_1-a_2,y=a_2-a_3,z=a_3-a_4,w=a_4-a_5;\textbf{则}x^2+y^2+z^2=1$

$(a_1-2a_2-a_3+2a_5)=(x-y-2z-2w)$
由柯西得$(x-y-2z-2w)\le \sqrt{(x^2+y^2+z^2+w^2)(1+1+4+4)}=\sqrt{10}$

注:此类题目看似复杂,条件化简以下就能看清方向。

posted @ 2018-04-25 10:32  M.T  阅读(364)  评论(0编辑  收藏  举报