MT【128】不动点指路
已知数列\(\{a_n\}\)满足\(2a_{n+1}=1-a_n^2\),且\(0<a_1<1\).求证:当\(n\geqslant 3\) 时,\(\left|\dfrac{1}{a_n}-\left(\sqrt 2+1\right)\right|<\dfrac{12}{2^n}\).
解答:
设迭代函数\(f(x)=\dfrac 12\left(1-x^2\right)\),那么函数的不动点为\(x=\sqrt 2-1\),一个保值区间是\(\left[0,\dfrac 12\right]\).
考虑到\(0<a_1<1\),于是\(0<a_2<\dfrac 12\),从而\(\dfrac 38<a_3<\dfrac 12\).
由不动点改造递推数列得$$|a_{n+1}-(\sqrt 2-1)|=\dfrac 12|a_n-(\sqrt 2-1)|\cdot|a_n+\sqrt 2-1|<\dfrac 12|a_n-(\sqrt 2-1)|,$$又当\(n=3\) 时,\(|a_3-(\sqrt 2-1)|<\dfrac 18\),于是当\(n\geqslant 3\)时,有$$\left|a_n-\left(\sqrt 2-1\right)\right|<\dfrac{1}{2^n}.$$ 而欲证明不等式即$$\left|\dfrac{\left(\sqrt 2-1\right)-a_n}{a_n\left(\sqrt 2-1\right)}\right|<\dfrac{12}{2^n},$$于是只需要证明$$\left|a_n\left(\sqrt 2-1\right)\right|>\dfrac{1}{12},$$也即$$a_n>\dfrac{\sqrt 2+1}{12},n\geqslant 3.$$事实上,当\(n\geqslant 3\) 时,有$$a_n>\dfrac 38>\dfrac{\sqrt 2+1}{12},$$于是原命题得证.
评:此类不动点题型,在做之前就有一个潜台词:\(a_n\)的范围可以通过作图可以做题前得到,后面问你的东西可以由这个潜台词去构造。