MT【352】极值点偏移

$0<x<y,x^y=y^x$,证明:$x+y>2e$


分析:注意到条件变形为$\dfrac{\ln x}{x}=\dfrac{\ln y}{y}\in(0,\dfrac{1}{e})$,结合对数算术平均不等式以及合分比定理得$\dfrac{x+y}{2}\ge\dfrac{x-y}{\ln x-\ln y}\in(e,+\infty)$故$x+y>2e$

posted @ 2019-08-20 11:28  M.T  阅读(1138)  评论(0编辑  收藏  举报