随笔分类 - 高考压轴题
摘要:已知$F_1,F_2$为椭圆$C:\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$的左右焦点,点$P$在椭圆$C$上移动时,$\Delta{F_1PF_2}$
的内心$I$的轨迹方程为_____
阅读全文
摘要:特别的,如图$AB$是焦点弦时,$M$为$AB$中点,$N$为$MQ$的中点,则
$1)AQ\bot BQ$
$2)MQ\parallel y\textbf{轴}$
$3)N\textbf{在抛物线上}$
$4)N\textbf{处的切线}\parallel AB$
$5)FQ\bot AB$
阅读全文
摘要:已知$$g(x)=
\begin{cases}
x+\dfrac{m}{x},&x\le\dfrac{1}{2}\textbf{且}x\ne0\\
x^2-3x+4&x\ge \dfrac{1}{2}
\end{cases}$$
$y=|g(x)|$在$(0,1)$上单调递减,求$m$的取值范围.
阅读全文
摘要:有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染这三种颜色的正方形都是偶数个,问有多少种不同的染色方法.
阅读全文
摘要:有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染白色的正方形必须是偶数个,问有多少种不同的染色方法.
阅读全文
摘要:$(1+x+x^2+\cdots+x^{100})^3$展开式中$x^{150}$前的系数为_____
阅读全文
摘要:设有5枚无区别的棋子放在如图$5*5$的棋盘的小方格中,放棋子的规则是每行每列放且仅放一个棋子,同时,不允许放在黑方格内,则共有______ 方法.
阅读全文
摘要:求方程$x+y+z=24$的整数解的个数,要求$1\le x\le 5,12\le y\le 18,-1\le z\le12$
阅读全文
摘要:(2012复旦)将1张面值100元的人民币全部换成面值1角,2角,5角的人民币,不同的换法有多少种?
阅读全文
摘要:已知函数$f(x)=x^3-3ax,(x\in(0,1))$若关于$x$的不等式$|f(x)|\le \dfrac{1}{4}$恒成立,求实数$a=$____
阅读全文
摘要:若函数$f(x)=ax^2+20x+14(a>0)$对任意实数$t$,在闭区间$[t-1,t+1]$上总存在两实数$x_1,x_2$,使得$|f(x_1)-f(x_2)|\ge8$成立,则实数$a$的最小值为____
阅读全文
摘要:已知椭圆焦点为$F_1(-1,0),F_2(1,0)$,且椭圆与直线$y=x-\sqrt{3}$相切,求
(1)椭圆的方程
(2)过$F_1$作两条相互垂直的直线$l_1,l_2$与椭圆相交于$P,Q,M,N$,求四边形$PNQM$的面积的最大值和最小值.
阅读全文
摘要:(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$PF|$所有可能值。
阅读全文
摘要:设正数$a,b,c$满足$ab+bc+ca=47$,求$(a^2+5)(b^2+5)(c^2+5)$的最小值_____
阅读全文
摘要:已知$a,b\in R^+,a+b=2$且对任意的$x\in R$,均有
$|2x^2+ax-b|\ge|x^2+cx+d|$则$\dfrac{d-4c}{cd}$的最小值______
阅读全文
摘要:已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,
若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a}$
证明:$\{k_n\}$为整数数列。
阅读全文
摘要:函数$f(x)=\dfrac{x}{x+1}+\dfrac{x+1}{x+2}+\cdots+\dfrac{x+2018}{x+2019}$ 的图像的对称中心_____
阅读全文
摘要:双曲线$\dfrac{x^2}{4}-\dfrac{y^2}{12}=1$ 的右焦点为 F,左准线为 L. 椭圆C 以F和L为其的焦点及准线,过F作一条斜率为 1 的直线交椭圆C于点A和B. 若椭圆C的中心P在以AB 为直径的圆内,则椭圆C的离心率e的取值范围是______
阅读全文
摘要:(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$
阅读全文
摘要:(2018中科大自招)
设$S=\{1,2,3,4,5\}$则满足$f(f(x))=x$的映射:$S \longrightarrow S$的个数____
阅读全文