角平分线导致的三角形内外角关系

如图(a) ,\(BD\)平分\(\angle ABC\)\(CD\)平分\(\angle ACB\),试确定\(\angle A\)\(\angle D\)的数量关系;

如图(b) ,\(BE\)平分\(\angle ABC\)\(CE\)平分外角\(\angle ACM\),试确定\(\angle A\)\(\angle E\)的数量关系;

如图(c) ,\(BF\)平分外角\(\angle CBP\)\(CF\)平分外角\(\angle BCQ\),试确定\(\angle A\)\(\angle F\)的数量关系;

解析:如图(a),延长 \(BD\)\(AC\)\(H\),则\(\angle BDC=\angle BHC+\angle DCH\)

又由于\(\angle BHC=\angle A+\angle HBA\)

\(\angle D=\angle BDC=\angle A+\angle HBA+\angle DCH\)

又由于\(\angle HBA=\cfrac{1}{2}\angle B\)\(\angle DCH=\cfrac{1}{2}\angle C\)

\(\angle BDC=\angle A+\cfrac{1}{2}(\angle B+\angle C)\)

\(\angle BDC=\angle A+\cfrac{1}{2}(180^{\circ}-\angle A)\)

\(\angle BDC=90^{\circ}+\cfrac{1}{2}\angle A\)

\(\angle D=90^{\circ}+\cfrac{1}{2}\angle A\)

如图(b),由于\(\angle ACM=\angle A+\angle B\)

\(\angle ECM=\cfrac{1}{2}\angle B+\angle E\)

\(\cfrac{1}{2}\angle ACM=\cfrac{1}{2}\angle A+\cfrac{1}{2}\angle B\)

又由于\(\angle ECM=\cfrac{1}{2}\angle ACM\)

\(\cfrac{1}{2}\angle B+\angle E=\cfrac{1}{2}\angle A+\cfrac{1}{2}\angle B\)

\(\angle E=\cfrac{1}{2}\angle A\)

如图(c),由于\(\angle CBF+\angle FBC+\angle F=180^{\circ}\)

\(\cfrac{1}{2}(180^{\circ}-\angle ABC)+\cfrac{1}{2}(180^{\circ}-\angle ACB)+\angle F=180^{\circ}\)

整理得到,\(\angle F=\cfrac{1}{2}(\angle ABC+\angle ACB)\)

\(\angle F=\cfrac{1}{2}(180^{\circ}-\angle A)=90^{\circ}-\cfrac{1}{2}\angle A\)

posted @ 2021-01-03 17:48  静雅斋初中  阅读(481)  评论(1编辑  收藏  举报