角平分线导致的三角形内外角关系
如图(b) ,\(BE\)平分\(\angle ABC\),\(CE\)平分外角\(\angle ACM\),试确定\(\angle A\)和\(\angle E\)的数量关系;
如图(c) ,\(BF\)平分外角\(\angle CBP\),\(CF\)平分外角\(\angle BCQ\),试确定\(\angle A\)和\(\angle F\)的数量关系;
解析:如图(a),延长 \(BD\) 交 \(AC\) 于\(H\),则\(\angle BDC=\angle BHC+\angle DCH\),
又由于\(\angle BHC=\angle A+\angle HBA\),
则\(\angle D=\angle BDC=\angle A+\angle HBA+\angle DCH\)
又由于\(\angle HBA=\cfrac{1}{2}\angle B\),\(\angle DCH=\cfrac{1}{2}\angle C\),
故\(\angle BDC=\angle A+\cfrac{1}{2}(\angle B+\angle C)\),
即\(\angle BDC=\angle A+\cfrac{1}{2}(180^{\circ}-\angle A)\),
故\(\angle BDC=90^{\circ}+\cfrac{1}{2}\angle A\);
即\(\angle D=90^{\circ}+\cfrac{1}{2}\angle A\);
如图(b),由于\(\angle ACM=\angle A+\angle B\),
又\(\angle ECM=\cfrac{1}{2}\angle B+\angle E\),
则\(\cfrac{1}{2}\angle ACM=\cfrac{1}{2}\angle A+\cfrac{1}{2}\angle B\),
又由于\(\angle ECM=\cfrac{1}{2}\angle ACM\),
则\(\cfrac{1}{2}\angle B+\angle E=\cfrac{1}{2}\angle A+\cfrac{1}{2}\angle B\),
故\(\angle E=\cfrac{1}{2}\angle A\);
如图(c),由于\(\angle CBF+\angle FBC+\angle F=180^{\circ}\),
即\(\cfrac{1}{2}(180^{\circ}-\angle ABC)+\cfrac{1}{2}(180^{\circ}-\angle ACB)+\angle F=180^{\circ}\),
整理得到,\(\angle F=\cfrac{1}{2}(\angle ABC+\angle ACB)\),
即\(\angle F=\cfrac{1}{2}(180^{\circ}-\angle A)=90^{\circ}-\cfrac{1}{2}\angle A\);