解方程

\(\bar{x}\) \(\bar{y}\) \(\bar{w}\) \(\sum\limits_{i=1}^{8}\)\((x_i-\bar{x})^2\) \(\sum\limits_{i=1}^{8}{(w_i-\bar{w})^2}\) \(\sum\limits_{i=1}^{8}{(x_i-\bar{x})\cdot(y_i-\bar{y})}\) \(\sum\limits_{i=1}^{8}{(w_i-\bar{w})\cdot(y_i-\bar{y})}\)
\(46.6\) \(563\) \(6.8\) \(289.8\) \(1.6\) \(1469\) \(108.8\)
\(x\) \((-\infty,0)\) \(0\) \((0,1)\) \((1,\cfrac{3}{2})\) \(\cfrac{3}{2}\) \((\cfrac{3}{2},+\infty)\)
\(f'(x)\) + 0 - - 0 +
\(f(x)\) \(\nearrow\) \(1\) \(\searrow\) \(\searrow\) \(17.9\) \(\nearrow\)

典例剖析

[初二习题]甲、乙两个人解关于\(x\)\(y\)的方程组\(\left\{\begin{array}{l}{mx+by=2}\\{cx-7y=8}\end{array}\right.,\) 已知甲正确的解得\(\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.,\) 而乙由于把 \(c\) 看错了,解得\(\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.,\) 那么\(m\)\(b\)\(c\)的值分别是多少?乙把\(c\)看成了多少?

分析:由于甲是正确地解得方程的解,\(\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.,\) 故其满足方程组,

\(\left\{\begin{array}{l}{3m-2b=2}\\{3c-7\times(-2)=8}\end{array}\right.,\) 解得\(c=-2\)

由上可以得到,\(3m-2b=2\)①;

又由于乙将系数看错,解得方程的解,\(\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.,\) 故其也满足方程组,

\(\left\{\begin{array}{l}{-2m+2b=2}\\{-2c-7\times(-2)=8}\end{array}\right.,\) 解得\(c=-11\)

由上可以得到,\(-2m+2b=2\)②;

联立①②,得到\(m=4\)\(b=5\)

\(m=4\)\(b=5\)\(c=-2\), 乙把\(c\)看成了\(c=11\).

posted @ 2020-11-30 21:53  静雅斋初中  阅读(128)  评论(0编辑  收藏  举报