解方程
\(\bar{x}\) | \(\bar{y}\) | \(\bar{w}\) | \(\sum\limits_{i=1}^{8}\)\((x_i-\bar{x})^2\) | \(\sum\limits_{i=1}^{8}{(w_i-\bar{w})^2}\) | \(\sum\limits_{i=1}^{8}{(x_i-\bar{x})\cdot(y_i-\bar{y})}\) | \(\sum\limits_{i=1}^{8}{(w_i-\bar{w})\cdot(y_i-\bar{y})}\) |
---|---|---|---|---|---|---|
\(46.6\) | \(563\) | \(6.8\) | \(289.8\) | \(1.6\) | \(1469\) | \(108.8\) |
\(x\) | \((-\infty,0)\) | \(0\) | \((0,1)\) | \((1,\cfrac{3}{2})\) | \(\cfrac{3}{2}\) | \((\cfrac{3}{2},+\infty)\) |
---|---|---|---|---|---|---|
\(f'(x)\) | + | 0 | - | - | 0 | + |
\(f(x)\) | \(\nearrow\) | \(1\) | \(\searrow\) | \(\searrow\) | \(17.9\) | \(\nearrow\) |
典例剖析
分析:由于甲是正确地解得方程的解,\(\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.,\) 故其满足方程组,
即\(\left\{\begin{array}{l}{3m-2b=2}\\{3c-7\times(-2)=8}\end{array}\right.,\) 解得\(c=-2\);
由上可以得到,\(3m-2b=2\)①;
又由于乙将系数看错,解得方程的解,\(\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.,\) 故其也满足方程组,
即\(\left\{\begin{array}{l}{-2m+2b=2}\\{-2c-7\times(-2)=8}\end{array}\right.,\) 解得\(c=-11\);
由上可以得到,\(-2m+2b=2\)②;
联立①②,得到\(m=4\), \(b=5\),
故\(m=4\), \(b=5\),\(c=-2\), 乙把\(c\)看成了\(c=11\).