斜率优化·学习笔记
\({\huge{Step\,1\,一点小转化}}\)
事实上斜率优化是专门用来处理这样一类\(dp\)式子的
窝萌尝试把上式中的\(Bj\)、\(Cj\)和\(basei\)等价成\(xj\)、\(yj\)和\(ki\),并把它们丢到一个平面上,然后它萌就会变成一堆点\((xj,yj)\),画一条过他们的直线,类似于
变换一下
窝萌会发现,现在窝萌所求的不过是一条截距最大的直线而已。那么其实就是相当于求一个给定\(k\)意义下最靠上的点。
\(qwq\)那么窝萌不妨先减弱问题的不可做性,使其单调——令\(x\)单调增、\(ki\)单调减。
那当窝萌在朴素\(Dp\)遍历所有的\(ki\)时,所得到的直线的轨迹应该是这样的:
(上图是个\(GIF\)……不动的话就拖出来看吧)轨迹正好是一个凸壳,并且你会发现它的轨迹正好是再绕着每个斜率下最优的点旋转。
有个神犇对此是这么解释的:
可以发现好多点是没有机会作为最优的点的。
形象⼀点的说,如果⼀个点的左边和右边某两个点在它上⽅“搭起”了⼀条线段,那么它就永远不会被选到。
而因为我们保证了\(x\)和\(k\)的单调性,所以就我们可以比较方便的考虑“如何选取当前最优点”这个问题。我们考虑遇到一个新的点,是否把他加入最优解集合里面,其实质就是维护一个上凸壳。那么已知两个点\(A\)和\(B\),现在遇到了新加入的点\(C\),此时有两种情况:
1、\(BC\)的斜率大于\(AB\)的斜率
这时我们需要抛弃\(B\),直接连接\(AC\):
2、\(BC\)的斜率小于\(AB\)的斜率
通过这种方式我们就可以完成对整个凸壳的维护。而在判定时也很简单,用叉积来判断即可,即有\(A\)、\(B\)、\(C\)三个点分别是\((xA,yA),(xB,yB),(xC,yC)\)满足\(xA≤xB≤xC\),那么如果
则证明是第一种情况,否则是第二种。
\(emmmm\)直接求斜率当然也是可以的吧,不过会不会很慢很麻烦啊\(qwq\)。
\({\huge{Step\,2\,代码实现以及拓展}}\)
\(emmm\)我们考虑用一个逻辑上单调的队列来实现去掉不优的状态 +加入新的状态。回归上题,我们所求的是\(max\),所以我们需要去掉那些斜率小的状态;同时需要加入斜率大的状态。由于整个过程牵扯到前后删点,所以用双端队列来维护。本蒟蒻的(伪)代码如下:
int queue[MAXN] ;
int head = 0, tail = 0 ;
for(i = 1; i <= N; i ++){
while (1){
A = queue[head], B = queue[head + 1] ;
if (y[A] - k[i] * x[A] < y[B] - k[i] * x[B]) head ++ ;
else break ;
}
dp[i] = base[i] + y[A] - k[i] * x[A] ;
Maybe y[i] needs calcing ?
Maybe x[i] also needs calcint ?
So, Calc_it() ;
while (tail - head >= 2){
A = queue[tail - 1], B = queue[tail] ;
if ((y[i] - y[A]) * (x[B] - x[A])
- (x[i] - x[A]) * (y[B] - y[A]) > 0)
tail-- ;
else break ;
}
queue[++ tail] = i ;
}
对了……我在啃这个地方时出了个\(bug\)……那是因为我一直以为\(y\)和\(x\)从本质上来讲有\(n^2\)个……\(Orz\)
那么对于拓展而言,我们以上做的一切都是基于“\(x\)和\(k\)单调”这一前提的,那么还会有以下两种情况:
1、\(x\)不单调
那么实质上就是我们需要动态插入删除、从内部删除,那么就需要用平衡树来维护一个凸包了 。
2、\(k\)不单调
那么实质上就是我们原来比较方便的第一个\(while\)——从左往右直接删是不行的了,因为现在不优不代表之后不优,所以此时我们需要的就是三分一个位置而不是从前向后扫、
哦,还有,对于\(dp\)式子而言,如果它长这个样子:
那么其实我们维护的就是一个下凸壳,所以此时只需要把所有的大于号改成小于号即可。