Handling Retry Logic with LLM (Large Language Model) in C++
Handling Retry Logic with LLM (Large Language Model) in C++
In today's blog, we are going to explore how to implement a retry mechanism for handling interactions with a large language model (LLM) in C++. Specifically, we'll focus on a task that attempts to generate a valid response by retrying multiple times with feedback-based adjustments. This pattern is useful when working with LLMs, where we want to ensure that the generated content is both accurate and relevant, even in cases of failures or suboptimal responses.
The llm_task
Function
The core function we're discussing is llm_task
, which tries to generate a response using a prompt, checks the response, and retries up to a specified limit if the response is not acceptable.
Here’s the basic structure of the llm_task
function:
llm_task(prompter, args, checker, feedbacker, retry_max) {
i = 0;
feedback = feedbacker();
while (i < retry_max) {
llm_resp = llm(prompter(args, feedback));
ret, check_resp = checker(i, llm_resp, feedback);
if (ret == 0) {
return 0, llm_resp;
}
feedback = feedbacker(check_resp);
i += 1;
}
return 1, null;
}
Explanation:
- prompter: This function generates a prompt using the args and the feedback. The prompt is used to communicate with the LLM.
- args: The arguments that will be passed to the prompter.
- checker: This function checks whether the LLM’s response meets the desired criteria (e.g., length, relevance). It returns a status code (ret) and feedback for further iteration.
- feedbacker: This function updates the feedback based on the checker’s response.
- retry_max: The maximum number of retry attempts if the LLM does not generate a valid response.
The llm_task function loops up to retry_max times, each time modifying the feedback, until a valid response is generated.
Example 1: Simple Prompt-Check Cycle
Here’s an example where we try to generate a simple response based on a basic prompt and check the length of the response:
// Define the prompter, checker, feedbacker, and retry_max for this example
prompter = [](args, feedback) {
return "Generate a response based on args and feedback: " + args + " " + feedback;
};
checker = [](i, llm_resp, feedback) {
// Simple check: return 0 if response length is above a certain threshold, else return 1
if (llm_resp.length() > 10) {
return 0, "Response is valid.";
}
return 1, "Response too short.";
};
feedbacker = []() {
return "Initial feedback.";
};
// Call the task
int retry_max = 3;
int status;
std::string response;
status, response = llm_task(prompter, "Request", checker, feedbacker, retry_max);
if (status == 0) {
std::cout << "Valid response: " << response << std::endl;
} else {
std::cout << "Failed to generate a valid response." << std::endl;
}
In this example, the llm_task function tries up to three times to generate a response. If the response length is greater than 10 characters, it is considered valid.
Output Example:
Valid response: Generate a response based on args and feedback: Request Initial feedback.
Example 2: Retry Mechanism with Modified Feedback
In this example, the feedback changes based on the number of attempts. The response must meet different criteria depending on whether it’s the first attempt or a retry:
// Define the prompter, checker, feedbacker, and retry_max for this example
prompter = [](args, feedback) {
return "Attempting with args: " + args + " and feedback: " + feedback;
};
checker = [](i, llm_resp, feedback) {
// Retry check based on attempt count (e.g., 1st retry allows shorter response)
if (i == 0 && llm_resp.length() > 5) {
return 0, "Valid response on first attempt.";
} else if (i > 0 && llm_resp.length() > 10) {
return 0, "Valid response after retry.";
}
return 1, "Response too short, need more retries.";
};
feedbacker = [](check_resp) {
// Modify feedback based on check response
return check_resp == "Response too short, need more retries." ? "Try harder!" : "Good job!";
};
// Call the task
int retry_max = 3;
int status;
std::string response;
status, response = llm_task(prompter, "Initial Request", checker, feedbacker, retry_max);
if (status == 0) {
std::cout << "Final valid response: " << response << std::endl;
} else {
std::cout << "Failed after retries." << std::endl;
}
Output Example:
Final valid response: Attempting with args: Initial Request and feedback: Good job!
In this case, the feedback changes after each check, guiding the LLM to generate better responses over time.
Conclusion
By using a retry mechanism combined with dynamic feedback and checking, we can improve the quality and reliability of responses from a large language model (LLM). Whether you’re developing a chatbot, an assistant, or any AI-driven application, this approach ensures that you handle imperfect or incomplete responses gracefully, retrying when necessary to produce the desired output.
We hope this blog post helps you understand how to implement retry logic with LLMs in C++. Feel free to experiment with the examples and adjust them to fit your use cases!
This Markdown blog outlines the concept, walks through the code examples, and explains the underlying logic. You can copy and paste this content directly into a blogging platform that supports Markdown, or use it as a template for a more detailed write-up!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix