高等数学-求导公式与法则
求导公式与法则
求导基础公式
\[(x^{a})^{'}= ax^{a-1}
\\
(\sqrt{x})^{'}=\frac{1}{2\sqrt{x}}
\\
(\frac{1}{x})'=-\frac{1}{x^2}
\\
(a^x)'=a^x\ln{a}
\\
(\log_a{x})'=\frac{1}{x\ln{a}}
\\
(\sin{x})'=\cos{x}
\\
(\cos{x})'=-\sin{x}
\\
(\tan{x})'=\sec^2{x}
\\
(\cot{x})'=-\csc^2{x}
\\
(\sec{x})'=\sec{x}\tan{x}
\\
(\csc{x})'=-\csc{x}\cot{x}
\\
(\arcsin{x})'=\frac{1}{\sqrt{1-x^2}}
\\
(\arccos{x})'=-\frac{1}{\sqrt{1-x^2}}
\\
(\arctan{x})'=\frac{1}{1+x^2}
\\
(arccot{x})'=-\frac{1}{1+x^2}
\]
求导运算法则
设$ u(x)、v(x)$可导,则
四则求导法则 | 四则求微分法则 |
---|---|
$$ (u\pm v)'=u'\pm v'$$ | $$d(u\pm v) = du\pm dv$$ |
$$ (1)(uv)'=u'v+v'u\ (2)(ku)'=ku'(k为常数)\ (3)(uvw)'=u'vw+uv'w+uvw'$$ | $$(1)d(uv)=udv+vdu\ (2)d(ku)=kdu(k为常数)\ (3)d(uvw)=vwdu+uwdv+uvdw$$ |
$$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$$ | $$d(\frac{u}{v})=\frac{vdu-udv}{v^2}$$ |
复合函数求导法则-链式法则
设\(y=f(u)\)可导,\(u=\phi(x)\)可导,且\(\phi^{'}(x)\neq0\),则\(y=f[\phi(x)]\)可导,且
\[\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx} = f^{'}(u).\phi^{'}(x)= f^{'}[\phi(x)].\phi^{'}(x)
\]
反函数求导法则
\[(1)设y=f(x)可导且f^{'}(x)\neq0,又x=\phi(y)为其反函数,则x=\phi(y)可导,且\\
\phi^{'}(y)=\frac{1}{f^{'}(x)}
\\
设y=f(x)二阶可导且f^{'}(x)\neq0,又x=\phi(y)为其反函数,则x=\phi(y)二阶可导,且\\
\phi^{''}(y)=-\frac{f^{''}(x)}{f^{'3}(x)}
\]