蓝桥杯,特殊回文数,Python

题目

问题描述
  123321是一个非常特殊的数,它从左边读和从右边读是一样的。
  输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n 。
输入格式
  输入一行,包含一个正整数n。
输出格式
  按从小到大的顺序输出满足条件的整数,每个整数占一行。
样例输入
52
样例输出
899998
989989
998899
数据规模和约定
  1<=n<=54。

解法一

我们首先想到的就是遍历所有五位数和六位数,将数字转成字符串再逆转然后判断是否为回文数,接着求各位数字之和判断是否等于n,满足以上两个条件就是答案。

n = int(input(''))
for i in range(10000, 1000000):
    num = str(i)
    s = sum(int(j) for j in num)
    if s == n and num == num[::-1]:
        print(num)

以上代码提交显示运行超时。仔细一想不难发现这里其实是二重循环,因为sum()函数求和过程其实也是一个循环,从而导致算法复杂度增大。下面我们看改进代码:

n = int(input(''))
for i in range(10000, 1000000):
    num = str(i)
    if num == num[::-1]:
        if n == sum(int(j) for j in num):
            print(num)

以上代码显示通过。因为这里的算法复杂度已经降低了很多,我们先判断是否为回文数再来求数字之和,因为满足回文数的数字并不多,因此减少了很多无效的求和运算。

解法二

我们采用逆向思维,先保证是回文数再判断数字之和是否等于n。根据回文数左右两边对称的特点,我们可以将五位数到六位数的循环转换成三位数到四位数的循环。

n = int(input(''))
x = []
for i in range(100, 1000):
    if sum(map(int, str(i) + (str(i)[:2])[::-1])) == n:
        x.append(str(i) + (str(i)[:2])[::-1])
    if sum(map(int, str(i) + str(i)[::-1])) == n:
        x.append(str(i) + str(i)[::-1])
for j in sorted(x):
    print(j)

以上代码得分只有四十分。我们再看下面的改进代码:

n = int(input('')) 
x = []
for i in range(100, 1000):
    if sum(map(int, str(i) + (str(i)[:2])[::-1])) == n:
        x.append(str(i) + (str(i)[:2])[::-1])
    if sum(map(int, str(i) + str(i)[::-1])) == n:
        x.append(str(i) + str(i)[::-1])
for j in sorted(map(int, x)):
    print(j)

我们观察两处代码的差异,其实只在对列表排序的时候将元素转成整型而已,至于为什么会得到不同的结果我想不清楚,如果有知道原因的读者烦请私聊我或者在下面留言。

 

posted @ 2020-02-05 11:56  Marvin-wen  阅读(1749)  评论(0编辑  收藏  举报