zz :https://www.cnblogs.com/21207-iHome/p/6894128.html

  • RPY角与Z-Y-X欧拉角

  描述坐标系{B}相对于参考坐标系{A}的姿态有两种方式。第一种是绕固定(参考)坐标轴旋转:假设开始两个坐标系重合,先将{B}绕{A}的X轴旋转$\gamma$,然后绕{A}的Y轴旋转$\beta$,最后绕{A}的Z轴旋转$\alpha$,就能旋转到当前姿态。可以称其为X-Y-Z fixed angles或RPY角(Roll, Pitch, Yaw)。

  Roll:横滚

  Pitch: 俯仰

Yaw: 偏航(航向)

  由于是绕固定坐标系旋转,则旋转矩阵为($c\alpha$ is shorthand for $\cos\alpha$, $s\alpha$ is shorthand for $\sin\alpha$,and so on.)

$$R_{XYZ}(\gamma,\beta,\alpha)=R_Z(\alpha)R_Y(\beta)R_X(\gamma)=\begin{bmatrix}
c\alpha c\beta & c\alpha s\beta s\gamma-s\alpha c\gamma & c\alpha s\beta c\gamma+s\alpha s\gamma\\ 
s\alpha c\beta & s\alpha s\beta s\gamma+c\alpha c\gamma & s\alpha s\beta c\gamma-c\alpha s\gamma\\ 
-s\beta& c\beta s\gamma & c\beta c\gamma
\end{bmatrix}$$

  另一种姿态描述方式是绕自身坐标轴旋转:假设开始两个坐标系重合,先将{B}绕自身的Z轴旋转$\alpha$,然后绕Y轴旋转$\beta$,最后绕X轴旋转$\gamma$,就能旋转到当前姿态。称其为Z-Y-X欧拉角,由于是绕自身坐标轴进行旋转,则旋转矩阵为:

$$R_{Z'Y'X'}(\alpha,\beta,\gamma)=R_Z(\alpha)R_Y(\beta)R_X(\gamma)=\begin{bmatrix}
c\alpha c\beta & c\alpha s\beta s\gamma-s\alpha c\gamma & c\alpha s\beta c\gamma+s\alpha s\gamma\\ 
s\alpha c\beta & s\alpha s\beta s\gamma+c\alpha c\gamma & s\alpha s\beta c\gamma-c\alpha s\gamma\\ 
-s\beta& c\beta s\gamma & c\beta c\gamma
\end{bmatrix}$$

  可以发现这两种描述方式得到的旋转矩阵是一样的,即绕固定坐标轴X-Y-Z旋转$(\gamma,\beta,\alpha)$和绕自身坐标轴Z-Y-X旋转$(\alpha,\beta,\gamma)$的最终结果一样,只是描述的方法有差别而已。In gerenal: three rotations taken about fixed axes yield the same final orientation as the same three rotations taken in opposite order about the axes of the moving frame.

  • Axis-Angle与四元数

  绕坐标轴的多次旋转可以等效为绕某一转轴旋转一定的角度。假设等效旋转轴方向向量为$\vec{K}=[k_x,k_y,k_z]^T$,等效旋转角为$\theta$,则四元数$q=(x,y,z,w)$,其中:

$$\begin{align*} 
x &= k_x \cdot sin \frac{\theta}{2}\\
y &= k_y \cdot sin \frac{\theta}{2}\\
z &= k_z \cdot sin \frac{\theta}{2}\\
w &= cos \frac{\theta}{2}
\end{align*}$$

  且有$x^2+y^2+z^2+w^2=1$

  即四元数存储了旋转轴和旋转角的信息,它能方便的描述刚体绕任意轴的旋转。

  四元数转换为旋转矩阵:

$$R=\begin{bmatrix}
1-2y^2-2z^2 & 2(xy-zw) & 2(xz+yw)\\ 
2(xy+zw) & 1-2x^2-2z^2 & 2(yz-xw)\\ 
2(xz-yw)& 2(yz+xw) & 1-2x^2-2y^2
\end{bmatrix}$$

   已知旋转矩阵为:

  则对应的四元数为:

 


  • 四元数与欧拉角的相互转换

  定义两个四元数:

  
  
  其中 表示矢量 
 
 ;而 
 
 表示矢量 
 

四元数加法:

  跟复数、向量和矩阵一样,两个四元数之和需要将不同的元素加起来。
  加法遵循实数和复数的所有交换律和结合律。

四元数乘法:

  四元数的乘法的意义类似于矩阵的乘法,可以表示旋转的合成。当有多次旋转操作时,使用四元数可以获得更高的计算效率。

  由于四元数乘法的非可换性,pq并不等于qp,qp乘积的向量部分是:
  
  Mathematica中有四元数相关的程序包Quaternions Package,需要先导入才能使用。下面计算了三个四元数的乘积:
<<Quaternions`     (* This loads the package *)
Quaternion[2, 1, 1, 3] ** Quaternion[2, 1, 1, 0] ** Quaternion[1, 1, 1, 1]    (* Be sure to use ** rather than * when multiplying quaternions *)

  计算结果为:Quaternion[-12, 4, 14, 2]

 
  那么将Z-Y-X欧拉角(或RPY角:绕固定坐标系的X-Y-Z依次旋转$\alpha$,$\beta$,$\gamma$角)转换为四元数:

$$q=\begin{bmatrix}\cos\frac{\gamma}{2}\\ 0\\ 0\\ \sin\frac{\gamma}{2}\end{bmatrix} \begin{bmatrix}\cos\frac{\beta}{2}\\ 0\\ \sin\frac{\beta}{2}\\ 0\end{bmatrix} \begin{bmatrix}\cos\frac{\alpha}{2}\\ \sin \frac{\alpha}{2}\\ 0\\ 0\end{bmatrix}=\begin{bmatrix}
\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}+\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\\ 
\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}-\cos\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\\ \cos\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2}+\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}
\\ \cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}-\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2}
\end{bmatrix}$$

   根据上面的公式可以求出逆解,即由四元数$q=(q_0,q_1,q_2,q_3)$或$q=(w,x,y,z)$到欧拉角的转换为:

$$\begin{bmatrix}\alpha\\ \beta\\ \gamma\end{bmatrix} = \begin{bmatrix} 
\arctan\frac{2(q_0q_1+q_2q_3)}{1-2(q_1^2+q_2^2)}\\ 
\arcsin(2(q_0q_2-q_1q_3))\\ 
\arctan\frac{2(q_0q_3+q_1q_2)}{1-2(q_2^2+q_3^2)}
\end{bmatrix}$$

  由于arctan和arcsin的取值范围在$\frac{-\pi}{2}$和$\frac{\pi}{2}$之间,只有180°,而绕某个轴旋转时范围是360°,因此要使用atan2函数代替arctan函数:

$$\begin{bmatrix}\alpha\\ \beta\\ \gamma\end{bmatrix} = \begin{bmatrix} 
atan2(2(q_0q_1+q_2q_3),1-2(q_1^2+q_2^2))\\ 
\arcsin(2(q_0q_2-q_1q_3))\\ 
atan2(2(q_0 q_3+q_1 q_2),1-2(q_2^2+q_3^2))
\end{bmatrix}$$

对于tan(θ) = y / x :

  θ = ATan(y / x)求出的θ取值范围是[-PI/2, PI/2];

  θ = ATan2(y, x)求出的θ取值范围是[-PI,   PI]。

  • 当 (x, y) 在第一象限, 0 < θ < PI/2

  • 当 (x, y) 在第二象限 PI/2 < θPI

  • 当 (x, y) 在第三象限, -PI < θ < -PI/2

  • 当 (x, y) 在第四象限, -PI/2 < θ < 0

   将四元数转换为欧拉角可以参考下面的代码。需要注意欧拉角有12种旋转次序,而上面推导的公式是按照Z-Y-X顺序进行的,所以有时会在网上看到不同的转换公式(因为对应着不同的旋转次序),在使用时一定要注意旋转次序是什么。比如ADAMS软件里就默认Body 3-1-3次序,即Z-X-Z欧拉角,而VREP中则按照X-Y-Z欧拉角旋转。
enum RotSeq{zyx, zyz, zxy, zxz, yxz, yxy, yzx, yzy, xyz, xyx, xzy,xzx};
 View Code

   上面的代码存在一个问题,即奇异性没有考虑。下面看一种特殊的情况(参考Maths - Conversion Quaternion to Euler):假设一架飞机绕Y轴旋转了90°(俯仰角pitch=90),机头垂直向上,此时如何计算航向角和横滚角?

  这时会发生自由度丢失的情况,即Yaw和Roll会变为一个自由度。此时再使用上面的公式根据四元数计算欧拉角会出现问题:

  $\arcsin(2(q_0q_2-q_1q_3))$的定义域为$[-1,1]$,因此$(q_0q_2-q_1q_3)\in[-0.5, 0.5]$,当$q_0q_2-q_1q_3=0.5$时(在程序中浮点数不能直接进行等于判断,要使用合理的阈值),俯仰角$\beta$为90°,将其带入正向公式计算出四元数$(q_0,q_1,q_2,q_3)$,然后可以发现逆向公式中atan2函数中的参数全部为0,即出现了$\frac{0}{0}$的情况!无法计算。

  $\beta=\pi/2$时,$\sin\frac{\beta}{2}=\cos\frac{\beta}{2}=0.707$,将其带入公式中有

$$q=\begin{bmatrix}w\\ x\\ y\\ z\end{bmatrix} 
\begin{bmatrix}
0.707(\cos\frac{\alpha}{2}\cos\frac{\gamma}{2}+\sin\frac{\alpha}{2}\sin\frac{\gamma}{2})\\ 
0.707(\sin\frac{\alpha}{2}\cos\frac{\gamma}{2}-\cos\frac{\alpha}{2}\sin\frac{\gamma}{2})\\ 
0.707(\cos\frac{\alpha}{2}\cos\frac{\gamma}{2}+\sin\frac{\alpha}{2}\sin\frac{\gamma}{2})\\ 
0.707(\cos\frac{\alpha}{2}\sin\frac{\gamma}{2}-\sin\frac{\alpha}{2}\cos\frac{\gamma}{2})
\end{bmatrix}=
\begin{bmatrix}
0.707\cos\frac{\alpha-\gamma}{2}\\ 
0.707\sin\frac{\alpha-\gamma}{2}\\ 
0.707\cos\frac{\alpha-\gamma}{2}\\ 
0.707\sin\frac{\alpha-\gamma}{2}
\end{bmatrix}$$

  则$\frac{x}{w}=\frac{z}{y}=\tan\frac{\alpha-\gamma}{2}$,于是有

$$\alpha-\gamma = 2\cdot atan2(x,w)$$

   通常令$\alpha=0$,这时$\gamma = -2\cdot atan2(x,w)$。可以进行验证:当四元数为(w,x,y,z)=(0.653,-0.271,0.653,0.271)时,根据这些规则计算出来的ZYX欧拉角为α=0°,β=90°,γ=45°

  当俯仰角为-90°,即机头竖直向下时的情况也与之类似,可以推导出奇异姿态时的计算公式。比较完整的四元数转欧拉角(Z-Y-X order)的代码如下:

复制代码
CameraSpacePoint QuaternionToEuler(Vector4 q) // Z-Y-X Euler angles
{
    CameraSpacePoint euler = { 0 };
    const double Epsilon = 0.0009765625f;
    const double Threshold = 0.5f - Epsilon;

    double TEST = q.w*q.y - q.x*q.z;

    if (TEST < -Threshold || TEST > Threshold) // 奇异姿态,俯仰角为±90°
    {
        int sign = Sign(TEST);

        euler.Z = -2 * sign * (double)atan2(q.x, q.w); // yaw

        euler.Y = sign * (PI / 2.0); // pitch

        euler.X = 0; // roll

    }
    else
    {
        euler.X = atan2(2 * (q.y*q.z + q.w*q.x), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
        euler.Y = asin(-2 * (q.x*q.z - q.w*q.y));
        euler.Z = atan2(2 * (q.x*q.y + q.w*q.z), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z);
    }
        
    return euler;
}
复制代码

 


  在DirectXMath Library中有许多与刚体姿态变换相关的函数可以直接调用:

  • 四元数乘法:XMQuaternionMultiply method --Computes the product of two quaternions.
  • 旋转矩阵转四元数:XMQuaternionRotationMatrix method --Computes a rotation quaternion from a rotation matrix.
  • 四元数转旋转矩阵:XMMatrixRotationQuaternion method -- Builds a rotation matrix from a quaternion.
  • 欧拉角转四元数:XMQuaternionRotationRollPitchYaw method --Computes a rotation quaternion based on the pitch, yaw, and roll (Euler angles).
  • 四元数转Axis-Angle:XMQuaternionToAxisAngle method --Computes an axis and angle of rotation about that axis for a given quaternion.
  • 欧拉角转旋转矩阵:XMMatrixRotationRollPitchYaw method --Builds a rotation matrix based on a given pitch, yaw, and roll (Euler angles).
  • Axis-Angle转旋转矩阵:XMMatrixRotationAxis method --Builds a matrix that rotates around an arbitrary axis.
  • 构造绕X/Y/Z轴的旋转矩阵:XMMatrixRotationX method --Builds a matrix that rotates around the x-axis.(Angles are measured clockwise when looking along the rotation axis toward the origin)

   下面的代码中坐标系绕X轴旋转90°(注意这里不是按照右手定则的方向,而是沿着坐标轴向原点看过去以顺时针方式旋转,因此与传统的右手定则刚好方向相反),来进行变换:

 View Code

  结果如下图所示:

 

参考:

quaternions.online

DirectXMath Library Quaternion Functions

Convert quaternion to euler rotations

Conversion between quaternions and Euler angles

Maths - Conversion Quaternion to Euler

Coordinate Transformations in Robotics—MATLAB

Introduction to Robotics - Mechanics and Control. Chapter 2 Spatial descriptions and transformations

 
 
posted on 2017-11-20 20:59  marty86  阅读(6359)  评论(0编辑  收藏  举报