nefu500(二分,最大流)

网购

Problem:A

Time Limit:3000ms

Memory Limit:65536K

Description

    在这个信息化的时代,网购成为了最流行的购物方式,比起在大街上,顶着烈日寻找需要的商品,大多数人更愿意坐在家里,点击下鼠标,来找到喜欢的商品,并完成购物。尽管网购还有很多安全问题,但是接受网购的人还是越来越多。网购的轻松,使得许多人淡忘了货物配送的烦恼。其实货物配送才是网购最重要的环节,货物送不到,一切都免谈。货物的配送还耗费了大量的资金,很多时候,一件商品被买下了,那么它可能要经过多城市,才能送达目的地。Pira作为配送商品的管理人员,他希望在满足所有货物能送达目的地的条件下,使得每次完成两个城市间的配送所花费的运费的最大值最小,也就是使得所走的路线中,费用最大的那条边的值最小
    PS:老板看到最大的一次花费太大的话,你就等着被fire吧T_T

Input

多组数据输入.
每组输入第一行有两个整数n和m,n表示有n个城市,m表示有m条路线,所有货物都是从1号城市配送的(1<=n<=10000,1<=m<=100000)
第二行有n个数,表示编号为1~n的城市,所购的物品个数,所有物品数的和小于10000000
接下来m行,每行有四个数u,v,cost和cap,表示从城市u到城市v配送一件物品需花费cost,最多可配送cap件物品,注意所有边都是单向的(1<=u,v<=n,0< cost< 10000000,0<=cap< 100000)

Output

每组输出每次完成城市间运输的最小花费,即最小的边权限制,如果不能完成货物的配送,则输出-1。

Sample Input

3 3
0 0 2
1 2 2 1
2 3 1 1
1 3 3 1
3 3
0 0 1
1 2 2 1
2 3 5 1
1 3 4 1

Sample Output

3
4

Hint

并不是求花费的总和

Source

Pira

题意中文就不解释了。。

既然让求最大的花费,那么我们可以来假设最大花费是x,那么所有的边的花费都会小于等于x,且同时整个图可以跑满流。现在我们不知道x是多少,所以我们可以选择用二分来求x。


#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<iomanip>
using namespace std;
typedef long long ll;
const   int oo=1e9;
/**oo 表示无穷大*/
const  int mm=200000;
const  int mn=10010;
int node,src,dest,edge;
/**node 表示节点数,src 表示源点,dest 表示汇点,edge 统计边数*/
int ver[mm],flow[mm],nex[mm];
int head[mn],work[mn],dis[mn],q[mn];
void prepare(int _node, int _src,int _dest)
{
    node=_node,src=_src,dest=_dest;
    for(int i=0; i<=node; ++i)head[i]=-1;
    edge=0;
}
void addedge( int u,  int v,  int c)
{
    ver[edge]=v,flow[edge]=c,nex[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,nex[edge]=head[v],head[v]=edge++;
}
bool Dinic_bfs()
{
    int i,u,v,l,r=0;
    for(i=0; i<node; ++i)dis[i]=-1;
    dis[q[r++]=src]=0;
    for(l=0; l<r; ++l)
        for(i=head[u=q[l]]; i>=0; i=nex[i])
            if(flow[i]&&dis[v=ver[i]]<0)
            {
                dis[q[r++]=v]=dis[u]+1;
                if(v==dest)  return 1;
            }
    return 0;
}
int Dinic_dfs(  int u, int exp)
{
    if(u==dest)  return exp;
    for(int &i=work[u],v,tmp; i>=0; i=nex[i])
        if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
        {
            flow[i]-=tmp;
            flow[i^1]+=tmp;
            return tmp;
        }
    return 0;
}
int Dinic_flow()
{
    int i,ret=0,delta;
    while(Dinic_bfs())
    {
        for(i=0; i<node; ++i)work[i]=head[i];
        while((delta=Dinic_dfs(src,oo)))ret+=delta;
    }
    return ret;
}
struct data
{
    int a,b,c,n;
} nod[100010];
int num[10010];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        int s=0;
        for(int i=1; i<=n; i++)
            scanf("%d",&num[i]),s+=num[i];
        int bj=0,r=-1,l=10000010,mid;
        while(m--)
            scanf("%d%d%d%d",&nod[bj].a,&nod[bj].b,&nod[bj].c,&nod[bj].n),
                  r=max(r,nod[bj].c),
                  l=min(l,nod[bj++].c);
        int ans=-1;
        r++;
        while(l<=r)
        {
            mid=(r+l)/2;
            prepare(n+2,1,n+1);
            for(int i=0; i<bj; i++)
                if(nod[i].c<=mid)
                    addedge(nod[i].a,nod[i].b,nod[i].n);
            for(int i=1; i<=n; i++)
                if(num[i])
                    addedge(i,n+1,num[i]);
            if(Dinic_flow()==s)
                ans=mid,r=mid-1;
            else l=mid+1;
        }
        printf("%d\n",ans);
    }
    return 0;
}



posted @ 2016-04-15 19:50  martinue  阅读(150)  评论(0编辑  收藏  举报