摘要:
参考链接:http://pinkyjie.com/2011/02/24/covariance-pca/ PCA的本质其实就是对角化协方差矩阵。 PCA就是将高维的数据通过线性变换投影到低维空间上去,但这个投影可不是随便投投,要遵循一个指导思想,那就是:找出最能够代表原始数据的投影方法。 “最能代表原 阅读全文
摘要:
线性变换就是矩阵的变换,而任何矩阵的变换可以理解为 一个正交变换+伸缩变换+另一个正交变换。(正交变换可以暂时理解为 不改变大小以及正交性的旋转/反射 等变换)A*P = y*P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长/缩短了一点(而不是毫无规律的多维变换)。y描述沿 阅读全文