摘要:
本周内容较多,故分为上下两篇文章。 一、内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distribution Algorithm Building an Anomaly Detection Syst 阅读全文
摘要:
Unsupervised Learning 本周我们讲学习非监督学习算法,会学习到如下概念 聚类(clustering) PCA(Principal Componets Analysis主成分分析),用于加速学习算法,有时在可视化和帮助我们理解数据的时候会有难以置信的作用。 一、内容概要 Clust 阅读全文
摘要:
本周主要学习 SVM 一、 内容概要 Large Margin Classification Optimization Objective(优化Objective(损失函数)) Large Margin Intuition(大边距的直观理解) Mathematics Behind Large Mag 阅读全文
摘要:
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法。为了让学习算法表现更好,我们还会学习如何解决处理偏态数据(skewed data)。 以下内容部分参考 "我爱公开课 Ad 阅读全文
摘要:
Neural Networks: Learning 内容较多,故分成上下两篇文章。 一、内容概要 Cost Function and Backpropagation Cost Function Backpropagation Algorithm Backpropagation Intuition B 阅读全文
摘要:
Neural Networks: Learning 内容较多,故分成上下两篇文章。 一、内容概要 Cost Function and Backpropagation Cost Function Backpropagation Algorithm Backpropagation Intuition B 阅读全文
摘要:
Neural Networks: Representation 一、 内容概要 Neural Network Model Representation 1 Model Representation 2 Applications Examples and Intuitions 1 Examples a 阅读全文
摘要:
Logistic Regression 一、内容概要 Classification and Representation Classification Hypothesis Representation Decision Boundary Logistic Regression Model 损失函数 阅读全文
摘要:
1. 内容概要 Multivariate Linear Regression(多元线性回归) 多元特征 多元变量的梯度下降 特征缩放 Computing Parameters Analytically 正规公式(Normal Equation ) 正规公式非可逆性(Normal Equation N 阅读全文
摘要:
之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候)。所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考。 1. 内容概要 Introduction 什么是机器学习 监督学习 非监 阅读全文