【Udacity并行计算课程笔记】- lesson 1 The GPU Programming Model

一、传统的提高计算速度的方法

  • faster clocks (设置更快的时钟)
  • more work over per clock cycle(每个时钟周期做更多的工作)
  • more processors(更多处理器)

二、CPU & GPU

  • CPU更加侧重执行时间,做到延时小
  • GPU则侧重吞吐量,能够执行大量的计算

更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人。

总结起来相比于CPU,GPU有如下特点:

  • 有很多计算单元,可以在一起执行大量的计算
  • 显示并行计算模型(explicitly parallel programming model),这个会在后面深度讨论
  • GPU是对吞吐量进行优化,而不是吞吐量

三、cuda登场

以前我们所写的代码都只能运行在CPU上,那么如果想运行在GPU上该怎么实现呢?

这时候就需要CUDA大大登场了!!!

cuda执行原理是CPU运行主程序,向GPU发送指示告诉它该做什么,那么系统就需要做如下的事情:

  • 1.把CPU内存中的数据转移到GPU的内存中
  • 2.将数据从GPU移回CPU
    (把数据从一个地方移到另一个地方命令为cudaMemcpy)
  • 3.在GPU上分配内存,在C语言中该命令是malloc,而在cuda中则是cudaMalloc
  • 4.在GPU上调用以并行方式计算的程序,这些程序叫做内核。

练习题:GPU可以做如下哪些事?


正确选项解释:

  • 选项2:回应CPU发来的请求,即对应上面的步骤2——将数据从GPU移回CPU
  • 选项4:回应CPU发来的请求,即对应上面的步骤1——把CPU内存中的数据转移到GPU的内存中
  • 选项5:计算由CPU调用的内核运算。

四、A CUDA Program

典型的GPU算法流程:

  • CPU在GPU上分配存储空间(cudaMalloc)
  • CPU将输入数据拷贝到GPU(cudaMemcpy)
  • CPU调用某些内核来监视这些在GPU上处理这个数据的内核(kernel launch)
  • CPU将GPU计算得到的结果复制回CPU(cudaMemcpy)

五、定义GPU计算

GPU能做的事是:

  • 有效的启动大量线程
  • 并行的运行上面启动的大量线程,而不是运行一个有很多并行工作的线程,也不是运行一个线程更加快速。

六、CPU&GPU计算原理区别

下面将计算数组[0,1,2……,63]每个元素平方来比较CPU和GPU计算原理的区别,以及具体代码实现。

CPU

for(i=0;i<64;i++){
    out[i] = in[i] * in[i];
}

该段代码在CPU中执行,只有一个线程,它会循环64次,每次迭代做一个计算。

GPU

实现代码:

#include <stdio.h>

__global__ void cube(float * d_out, float * d_in){
	// Todo: Fill in this function
	int idx =  threadIdx.x;
	d_out[idx] = d_in[idx]+6;
}

int main(int argc, char ** argv) {
	const int ARRAY_SIZE = 64;
	const int ARRAY_BYTES = ARRAY_SIZE * sizeof(float);

	// generate the input array on the host
	float h_in[ARRAY_SIZE];
	for (int i = 0; i < ARRAY_SIZE; i++) {
		h_in[i] = float(i);
	}
	float h_out[ARRAY_SIZE];

	// declare GPU memory pointers
	float * d_in;
	float * d_out;

	// allocate GPU memory
	cudaMalloc((void**) &d_in, ARRAY_BYTES);
	cudaMalloc((void**) &d_out, ARRAY_BYTES);

	// transfer the array to the GPU
	cudaMemcpy(d_in, h_in, ARRAY_BYTES, cudaMemcpyHostToDevice);

	// launch the kernel
	cube<<<1, ARRAY_SIZE>>>(d_out, d_in);

	// copy back the result array to the CPU
	cudaMemcpy(h_out, d_out, ARRAY_BYTES, cudaMemcpyDeviceToHost);

	// print out the resulting array
	for (int i =0; i < ARRAY_SIZE; i++) {
		printf("%f", h_out[i]);
		printf(((i % 4) != 3) ? "\t" : "\n");
	}

	cudaFree(d_in);
	cudaFree(d_out);

	return 0;
}

代码拆解分析:

1.变量命名规则

在编写cuda代码时,需要遵守如下规则,这样可以避免犯不必要的错误。
CPU的变量以h_开头(host),而GPU的变量以d_开头(device)。

2.定义内核函数

__global__ void square(float *d_out, float *d_in){
    int idx = threadIdx.x;
    float f = d_in[idx];
    d_out[idx] = f * f;
}

通过 global 定义的函数可以让cuda知道这是一个内核函数。

函数第一行作用是通过内置的线程索引threadIdx获得当前线程的索引。另外threadIdx是c语言中的struct,它有3名成员,分别是 .x,.y,.z 。如果该线程是第一个线程,则threadIdx.x返回的值是0

3.数据转移cudaMemcpy

代码片段

// 将数据转移到GPU
cudaMemcpy(d_in, h_in, ARRAY_BYTES, cudaMemcpyHostToDevice);

// 调用内核
square<<<1, ARRAY_SIZE>>>(d_out, d_in);

// 将结果传回CPU
cudaMemcpy(h_out, d_out, ARRAY_BYTES, cudaMemcpyDeviceToHost);

注意下面函数的第三个参数direction有三种选项:

cudaMemcpy(destination, source, size, direction)

分别是:

  • cudaMemcpyHostToDevice
  • cudaMemcpyDeviceToHost
  • cudaMemcpyDeviceToDevice

4.调用内核 square<<<1, 64>>>

另外在解释一下如上函数各参数的含义:

第一个参数1表示需要分配的的数量为1,
第二个参数64表示每一块有64个线程。
所以假设我们需要1280个线程,我们就可以这样定义:

square<<<10,128>>>(param1, param2);

或者

square<<<5,256>>>(param1, param2);

BUT!!! 要注意不能像下面这样定义,因为一个块的线程数一般没那么大,一般只有1024.

square<<<1,1280>>>(param1, param2);

还需要知道的是上面介绍的两个参数其实可以是二维或者三维的,即
square<<<1,64>>> 等效为 square<<<dim3(1,1,1),dim3(64,1,1)>>> ,但是dim3(64,1,1)=dim3(64)=64。

例如我们有一个128*128的图片,现在需要对每一个像素进行计算,我们可以是
<<<dim3(128,1,1),(128,1,1)>>>,也可以是<<<dim3(8,8,1),dim3(16,16,1)>>>

总结起来核函数的调用的完整形式是

kernel<<<dim3(bx,by,bz), dim3(tx,ty,tz), shmem>>>(...)

第一个参数表示网络块的维数(bx * by * bz),
第二个参数表示每块所含有的线程数(tx * ty * tz)
第三个参数一般默认为0,它是以字节表示的每个线程块分配的共享内存量

![]https://ask.qcloudimg.com/http-save/yehe-1215004/q3rf2iq5r.png?imageView2/2/w/1620)

posted @ 2017-09-26 21:20  marsggbo  阅读(610)  评论(0编辑  收藏  举报