源码详解Pytorch的state_dict和load_state_dict

在 Pytorch 中一种模型保存和加载的方式如下:

# save
torch.save(model.state_dict(), PATH)

# load
model = MyModel(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数,下面看看源代码如何实现的。

state_dict

# torch.nn.modules.module.py
class Module(object):
	def state_dict(self, destination=None, prefix='', keep_vars=False):
		if destination is None:
			destination = OrderedDict()
			destination._metadata = OrderedDict()
		destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
		for name, param in self._parameters.items():
			if param is not None:
				destination[prefix + name] = param if keep_vars else param.data
		for name, buf in self._buffers.items():
			if buf is not None:
				destination[prefix + name] = buf if keep_vars else buf.data
		for name, module in self._modules.items():
			if module is not None:
				module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
		for hook in self._state_dict_hooks.values():
			hook_result = hook(self, destination, prefix, local_metadata)
			if hook_result is not None:
				destination = hook_result
		return destination

可以看到state_dict函数中遍历了4中元素,分别是_paramters,_buffers,_modules_state_dict_hooks,前面三者在之前的文章已经介绍区别,最后一种就是在读取state_dict时希望执行的操作,一般为空,所以不做考虑。另外有一点需要注意的是,在读取Module时采用的递归的读取方式,并且名字间使用.做分割,以方便后面load_state_dict读取参数。

class MyModel(nn.Module):
	def __init__(self):
		super(MyModel, self).__init__()
		self.my_tensor = torch.randn(1) # 参数直接作为模型类成员变量
		self.register_buffer('my_buffer', torch.randn(1)) # 参数注册为 buffer
		self.my_param = nn.Parameter(torch.randn(1))
		self.fc = nn.Linear(2,2,bias=False)
		self.conv = nn.Conv2d(2,1,1)
		self.fc2 = nn.Linear(2,2,bias=False)
		self.f3 = self.fc
	def forward(self, x):
		return x

model = MyModel()
print(model.state_dict())
>>>OrderedDict([('my_param', tensor([-0.3052])), ('my_buffer', tensor([0.5583])), ('fc.weight', tensor([[ 0.6322, -0.0255],
        [-0.4747, -0.0530]])), ('conv.weight', tensor([[[[ 0.3346]],

         [[-0.2962]]]])), ('conv.bias', tensor([0.5205])), ('fc2.weight', tensor([[-0.4949,  0.2815],
        [ 0.3006,  0.0768]])), ('f3.weight', tensor([[ 0.6322, -0.0255],
        [-0.4747, -0.0530]]))])

可以看到最后的确输出了三种参数。

load_state_dict

下面的代码中我们可以分成两个部分看,

  1. load(self)

这个函数会递归地对模型进行参数恢复,其中的_load_from_state_dict的源码附在文末。

首先我们需要明确state_dict这个变量表示你之前保存的模型参数序列,而_load_from_state_dict函数中的local_state 表示你的代码中定义的模型的结构。

那么_load_from_state_dict的作用简单理解就是假如我们现在需要对一个名为conv.weight的子模块做参数恢复,那么就以递归的方式先判断conv是否在staet__dictlocal_state中,如果不在就把conv添加到unexpected_keys中去,否则递归的判断conv.weight是否存在,如果都存在就执行param.copy_(input_param),这样就完成了conv.weight的参数拷贝。

  1. if strict:

这个部分的作用是判断上面参数拷贝过程中是否有unexpected_keys或者missing_keys,如果有就报错,代码不能继续执行。当然,如果strict=False,则会忽略这些细节。

def load_state_dict(self, state_dict, strict=True):
	missing_keys = []
	unexpected_keys = []
	error_msgs = []

	# copy state_dict so _load_from_state_dict can modify it
	metadata = getattr(state_dict, '_metadata', None)
	state_dict = state_dict.copy()
	if metadata is not None:
		state_dict._metadata = metadata

	def load(module, prefix=''):
		local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
		module._load_from_state_dict(
			state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
		for name, child in module._modules.items():
			if child is not None:
				load(child, prefix + name + '.')

	load(self)

	if strict:
		error_msg = ''
		if len(unexpected_keys) > 0:
			error_msgs.insert(
				0, 'Unexpected key(s) in state_dict: {}. '.format(
					', '.join('"{}"'.format(k) for k in unexpected_keys)))
		if len(missing_keys) > 0:
			error_msgs.insert(
				0, 'Missing key(s) in state_dict: {}. '.format(
					', '.join('"{}"'.format(k) for k in missing_keys)))

	if len(error_msgs) > 0:
		raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
						   self.__class__.__name__, "\n\t".join(error_msgs)))
  • _load_from_state_dict
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
						  missing_keys, unexpected_keys, error_msgs):
	for hook in self._load_state_dict_pre_hooks.values():
		hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

	local_name_params = itertools.chain(self._parameters.items(), self._buffers.items())
	local_state = {k: v.data for k, v in local_name_params if v is not None}

	for name, param in local_state.items():
		key = prefix + name
		if key in state_dict:
			input_param = state_dict[key]

			# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
			if len(param.shape) == 0 and len(input_param.shape) == 1:
				input_param = input_param[0]

			if input_param.shape != param.shape:
				# local shape should match the one in checkpoint
				error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
								  'the shape in current model is {}.'
								  .format(key, input_param.shape, param.shape))
				continue

			if isinstance(input_param, Parameter):
				# backwards compatibility for serialized parameters
				input_param = input_param.data
			try:
				param.copy_(input_param)
			except Exception:
				error_msgs.append('While copying the parameter named "{}", '
								  'whose dimensions in the model are {} and '
								  'whose dimensions in the checkpoint are {}.'
								  .format(key, param.size(), input_param.size()))
		elif strict:
			missing_keys.append(key)

	if strict:
		for key, input_param in state_dict.items():
			if key.startswith(prefix):
				input_name = key[len(prefix):]
				input_name = input_name.split('.', 1)[0]  # get the name of param/buffer/child
				if input_name not in self._modules and input_name not in local_state:
					unexpected_keys.append(key)



微信公众号:AutoML机器学习
MARSGGBO原创
如有意合作或学术讨论欢迎私戳联系~
邮箱:marsggbo@foxmail.com


如有意合作,欢迎私戳

邮箱:marsggbo@foxmail.com


2019-12-20 21:55:21



posted @ 2019-12-20 22:31  marsggbo  阅读(32972)  评论(2编辑  收藏  举报