【转载】负采样算法

任何采样算法都应该保证频次越高的样本越容易被采样出来。基本的思路是对于长度为1的线段,根据词语的词频将其公平地分配给每个词语:

image.png

counter就是w的词频。

于是我们将该线段公平地分配了:

image.png

接下来我们只要生成一个0-1之间的随机数,看看落到哪个区间,就能采样到该区间对应的单词了,很公平。

但怎么根据小数找区间呢?速度慢可不行。

word2vec用的是一种查表的方式,将上述线段标上M个“刻度”,刻度之间的间隔是相等的,即1/M:

image.png

接着我们就不生成0-1之间的随机数了,我们生成0-M之间的整数,去这个刻度尺上一查就能抽中一个单词了。

在word2vec中,该“刻度尺”对应着table数组。在具体实现时,不是直接用counter(w),而是对词频取了α次幂,一般去α=3/4=0.75,即:

image.png

这个幂实际上是一种“平滑”策略,能够让低频词多一些出场机会,高频词贡献一些出场机会,劫富济贫。

原文:word2vec原理推导与代码分析




微信公众号:AutoML机器学习
MARSGGBO原创
如有意合作或学术讨论欢迎私戳联系~
邮箱:marsggbo@foxmail.com

2019-1-1



posted @ 2019-01-01 11:10  marsggbo  阅读(4027)  评论(0编辑  收藏  举报