投影矩阵推导

# 正交矩阵推导

正交矩阵6个面

x = l, x = r,  y = b, y = t, z = n, z = f

原来的点(x,y,z)映射到(x`,y`,z`),其中x`,y` [-1, 1],z`[0,1]之间(dx的ndc空间z是0-1,opengl的是-1-1)

x` = 2*(x-l)/(r-l)-1

y`= 2*(y-b)/(t-b)-1

z`= (z-n)/(f-n)-1

              2/(r-l)  0    0    -(r+l)/(r-l)

              0    2/(t-b)  0    -(t+b)/(t-b)

(x`, y`, z`,1) =        0    0    1/(f-n)  -(f+n)/(f-n)       *(x, y, z,1)

              0    0     0   1

   认为正交投影是堆成,即:

r = -l t = -b

化简后为:

              -1/l  0    0      0

              0    -1/b  0      0

(x`, y`, z`,1) =        0    0    1/(f-n)  -(f+n)/(f-n)        *(x, y, z,1)

              0    0     0   1

                             

 #透视投影矩阵推导

透视投影矩阵变换分2步,1转成clip空间,即为齐次坐标系,2转成ndc空间。

转齐次坐标系

x` = n*x/z

y` = n*y/z

再把x`,y`转换到-1-1之间

x`` = 2*(x`-l)/(r-l)-1 = 2nx/z(r-l) - (r+l)/(r-l)

y``= 2*(y`-b)/(t-b)-1= 2ny/z(t-b) - (t+b)/(t-b)

等价于:

x``z = 2nx/(r-l)-(r+l)z/(r-l)

y``z = 2ny/(t-b)-(t+b)z/(t-b)

z``需要特别处理,按照z``z的形式,改成

z``z = (z-n)*f/(f-n) = f*z/(f-n) -nf/(f-n)

写成

              2n/(r-l)  0    -(r+l)/(r-l)    0

              0    2n/(t-b)  -(t+b)/(t-b)    0

(x`z, y`z, z`z,z) =       0    0      f/(f-n)    -fn/(f-n)      *(x, y, z,1)

              0    0       1      0

视椎体对称,r=-l, t = -b,化简为:

              -n/l   0     0      0

              0    -n/b    0      0

(x`z, y`z, z`z,z) =        0    0     f/(f-n)    -fn/(f-n)      *(x, y, z,1)

              0    0     1       0

 

思考

其实用下面的投影矩阵是不是也可以

              2n/(r-l)  0    -(r+l)/(r-l)    0

              0    2n/(t-b)  -(t+b)/(t-b)    0

(x`z, y`z, z`z,z) =       0    0      -1      0      *(x, y, z,1)

              0    0       1      0

 视椎体对称,r=-l, t = -b,化简为:

              -n/l   0     0      0

              0    -n/b    0      0

(x`z, y`z, z`z,z) =        0    0     -1      0     *(x, y, z,1)

              0    0     1      0

 其实是不可以的,投影矩阵是为了把坐标映射到立方体,而不是一个平面

竖界截面上

tan (fov/2)  = -b/n

定义横纵比为r

l/b = r

投影矩阵等于与

              ctan(fov/2)/r   0       0      0

              0    ctan(fov/2)     0      0

(x`z, y`z, z`z,z) =        0      0        f/(f-n)    -fn/(f-n)   *(x, y, z,1)

              0      0        1      0

              ctan(fov/2)/r    0       0      0

              0      ctan(fov/2)    0      0

(x`z, y`z, z`z,z) =        0        0       -1      0     *(x, y, z,1)

              0        0       1      0

posted on 2021-11-12 14:31  marcher  阅读(233)  评论(0编辑  收藏  举报

导航