0240. Search a 2D Matrix II (M)
Search a 2D Matrix II (M)
题目
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5
, return true
.
Given target = 20
, return false
.
题意
判断在一个行元素递增、列元素也递增的矩阵中能否找到目标值。
思路
二分法:本来想着先用二分找到行数的下界,但发现即使找到了下界down,也需要再重新遍历 0 - (down-1) 这些行,对每行进行二分查找。这样不如直接从上到下遍历所有行,如果当前行行尾元素小于target,说明该行可以跳过;如果当前行行首元素大于target,说明剩余行不可能存在target,可以直接跳出循环;其余情况则对当前行进行二分查找。时间复杂度为\(O(MlogN)\)。
分治法:从矩阵的左下角元素X出发,根据矩阵的性质,如果target>X,以X作一条垂直线,则target只可能在该线右侧的矩阵里;如果target<X,以X作一条水平线,则target只可能在该线上侧的矩阵里。因此每次都可以将问题转化为在一个更小的矩阵里找到target。当然也可以以矩阵的右上角元素作为起点。时间复杂度为\(O(M+N)\)。
代码实现
Java
二分法
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int m = matrix.length, n = matrix[0].length;
for (int i = 0; i < m; i++) {
if (matrix[i][n - 1] < target) {
continue;
} else if (matrix[i][0] > target) {
break;
} else {
int left = 0, right = n - 1;
while (left <= right) {
int mid = (right - left) / 2 + left;
if (matrix[i][mid] < target) {
left = mid + 1;
} else if (matrix[i][mid] > target) {
right = mid - 1;
} else {
return true;
}
}
}
}
return false;
}
}
分治法
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int m = matrix.length, n = matrix[0].length;
int i = m - 1, j = 0;
while (i >= 0 && j < n) {
if (matrix[i][j] < target) {
j++;
} else if (matrix[i][j] > target) {
i--;
} else {
return true;
}
}
return false;
}
}
JavaScript
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function (matrix, target) {
const m = matrix.length
const n = matrix[0].length
let i = m - 1
let j = 0
while (i >= 0 && j < n) {
if (matrix[i][j] < target) {
j++
} else if (matrix[i][j] > target) {
i--
} else {
return true
}
}
return false
}