0142. Linked List Cycle II (M)
Linked List Cycle II (M)
题目
Given a linked list, return the node where the cycle begins. If there is no cycle, return null
.
To represent a cycle in the given linked list, we use an integer pos
which represents the position (0-indexed) in the linked list where tail connects to. If pos
is -1
, then there is no cycle in the linked list.
Note: Do not modify the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.
Example 2:
Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.
Example 3:
Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.
Follow-up:
Can you solve it without using extra space?
题意
判断给定链表中是否存在环,存在则返回环的入口结点。
思路
比较简单的就是将所有遍历到的结点记录下来,如果记录了两次则说明当前结点就是所求的结点。
同样可以使用快慢指针的方法:慢指针每次走一步,快指针每次走两步,如果快指针追上慢指针则说明存在环;当判断出存在环后,将快指针重新指向头结点,步进距离改为一个结点,然后使快指针和慢指针同时继续前进,当两者再次相遇时,所处结点就是所求入口结点。证明如下:
记第一次相遇时慢指针走过的距离为\(S_1\),快指针走过的距离为\(S_2\),那么可得如下方程组:
\[\begin{cases}
S_1=x+y \\
S_2=x+y+n*(y+z) \\
S_2=2*S_1
\end{cases}
\]
化简后可得:
\[x=(n-1)*(y+z)+z
\]
说明当快指针重新从A点走到B点时,慢指针从C点出发已经走过了n圈加上z的距离,即也正好落在B点上,因此上述方法能够正确找到环的入口结点。
代码实现
Java
Hash
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null) {
return null;
}
Set<ListNode> set = new HashSet<>();
while (head != null) {
if (!set.add(head)) {
return head;
}
head = head.next;
}
return null;
}
}
快慢指针
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null) {
return null;
}
ListNode slow = head, fast = head;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {
fast = head;
while (slow != fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
return null;
}
}
JavaScript
/**
* @param {ListNode} head
* @return {ListNode}
*/
var detectCycle = function (head) {
let slow = head
let fast = head
while (fast && fast.next) {
slow = slow.next
fast = fast.next.next
if (slow === fast) {
slow = head
while (slow !== fast) {
slow = slow.next
fast = fast.next
}
return slow
}
}
return null
}