0188. Best Time to Buy and Sell Stock IV (H)
Best Time to Buy and Sell Stock IV (H)
题目
You are given an integer array prices
where prices[i]
is the price of a given stock on the ith
day.
Design an algorithm to find the maximum profit. You may complete at most k
transactions.
Notice that you may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
Example 1:
Input: k = 2, prices = [2,4,1]
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: k = 2, prices = [3,2,6,5,0,3]
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4. Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Constraints:
0 <= k <= 10^9
0 <= prices.length <= 10^4
0 <= prices[i] <= 1000
题意
股票买卖问题之四,允许最多k次交易(k次买入k次卖出)。
思路
解法在 0309. Best Time to Buy and Sell Stock with Cooldown 的基础上增加一个k次交易的限制。
\(hold[i][j]\)表示在第i天仍持有股票,且最多已进行了j次交易。
\(sold[i][j]\)表示在第i天未持有任何股票,且最多已进行了j次交易。
可以得到如下递推关系:
\[\begin{cases}
hold[i][j]=max(sold[i-1][j-1]-prices[i],\ hold[i-1][j])\\\\
sold[i][j]=max(hold[i-1][j]+prices[i],\ sold[i-1][j])
\end{cases}
\]
边界条件是:\(\forall{j\ge1},\ hold[0][j]=-prices[0]\)
需要注意的是,case可能会使坏给一个巨大的k值,导致超时。这里的一个技巧是,当k大于数组长度一半时时,问题就等同于可以进行不限次数的交易,可以直接用 0122. Best Time to Buy and Sell Stock II 中的一次遍历方法解决。
代码实现
Java
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) {
return 0;
}
if (k > prices.length / 2) {
return maxProfit(prices);
}
int[][] hold = new int[prices.length][k + 1];
int[][] sold = new int[prices.length][k + 1];
for (int i = 0; i < prices.length; i++) {
for (int j = 1; j <= k; j++) {
if (i == 0) {
hold[i][j] = -prices[i];
} else {
hold[i][j] = Math.max(hold[i - 1][j], sold[i - 1][j - 1] - prices[i]);
sold[i][j] = Math.max(hold[i - 1][j] + prices[i], sold[i - 1][j]);
}
}
}
return sold[prices.length - 1][k];
}
private int maxProfit(int[] prices) {
int profit = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
}