0074. Search a 2D Matrix (M)
Search a 2D Matrix (M)
题目
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
Output: true
Example 2:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
Output: false
题意
判断在一个行元素递增、列元素也递增的矩阵中能否找到目标值。
思路
有序序列中找值那肯定是要用二分法,不过可以有两种二分查找的方式:
- 先一个二分找到目标值应该在的行,再一个二分在该行中查找目标值。
- 由于矩阵的特殊性(行递增,且下一行元素都比上一行元素大),可以将矩阵直接当成长度为 m*n 的一维数组处理。
- 分治法,从左下角开始搜索,target更大则向右走,target更小则向上走(该题里实际就是暴力遍历)。
代码实现
Java
矩阵二分
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
if (m == 0) return false;
int n = matrix[0].length;
if (n == 0) return false;
if (target < matrix[0][0]) {
return false;
}
// 先找行
int left = 0, right = m - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (target < matrix[mid][0]) {
right = mid - 1;
} else if (target > matrix[mid][0]) {
left = mid + 1;
} else {
return true;
}
}
int r = left - 1;
// 再找列
left = 0;
right = n - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (target < matrix[r][mid]) {
right = mid - 1;
} else if (target > matrix[r][mid]) {
left = mid + 1;
} else {
return true;
}
}
return false;
}
}
一维二分
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
if (m == 0) return false;
int n = matrix[0].length;
if (n == 0) return false;
int left = 0, right = m * n - 1;
while (left <= right) {
int mid = (left + right) / 2;
// 一维坐标转换为二维坐标
int x = mid / n;
int y = mid % n;
if (target < matrix[x][y]) {
right = mid - 1;
} else if (target > matrix[x][y]) {
left = mid + 1;
} else {
return true;
}
}
return false;
}
}
JavaScript
矩阵二分
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function (matrix, target) {
if (matrix.length === 0 || matrix[0].length === 0) {
return false
}
let m = matrix.length
let n = matrix[0].length
let left = 0
let right = m - 1
while (left <= right) {
let mid = Math.trunc((right - left) / 2) + left
if (matrix[mid][0] < target) {
left = mid + 1
} else if (matrix[mid][0] > target) {
right = mid - 1
} else {
return true
}
}
if (right >= 0) {
let row = right
left = 0
right = n - 1
while (left <= right) {
let mid = Math.trunc((right - left) / 2) + left
if (matrix[row][mid] < target) {
left = mid + 1
} else if (matrix[row][mid] > target) {
right = mid - 1
} else {
return true
}
}
}
return false
}
分治法
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function (matrix, target) {
if (matrix.length === 0 || matrix[0].length === 0) {
return false
}
let m = matrix.length, n = matrix[0].length
let i = m - 1, j = 0
while (i >= 0 && j < n) {
if (matrix[i][j] < target) {
j++
} else if (matrix[i][j] > target) {
i--
} else {
return true
}
}
return false
}