0074. Search a 2D Matrix (M)

Search a 2D Matrix (M)

题目

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
Output: true

Example 2:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
Output: false

题意

判断在一个行元素递增、列元素也递增的矩阵中能否找到目标值。

思路

有序序列中找值那肯定是要用二分法,不过可以有两种二分查找的方式:

  1. 先一个二分找到目标值应该在的行,再一个二分在该行中查找目标值。
  2. 由于矩阵的特殊性(行递增,且下一行元素都比上一行元素大),可以将矩阵直接当成长度为 m*n 的一维数组处理。
  3. 分治法,从左下角开始搜索,target更大则向右走,target更小则向上走(该题里实际就是暴力遍历)。

代码实现

Java

矩阵二分

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length;
        if (m == 0) return false;
        int n = matrix[0].length;
        if (n == 0) return false;

        if (target < matrix[0][0]) {
            return false;
        }

        // 先找行
        int left = 0, right = m - 1;
        while (left <= right) {
            int mid = (left + right) / 2;
            if (target < matrix[mid][0]) {
                right = mid - 1;
            } else if (target > matrix[mid][0]) {
                left = mid + 1;
            } else {
                return true;
            }
        }
        int r = left - 1;

        // 再找列
        left = 0;
        right = n - 1;
        while (left <= right) {
            int mid = (left + right) / 2;
            if (target < matrix[r][mid]) {
                right = mid - 1;
            } else if (target > matrix[r][mid]) {
                left = mid + 1;
            } else {
                return true;
            }
        }
        
        return false;
    }
}

一维二分

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length;
        if (m == 0) return false;
        int n = matrix[0].length;
        if (n == 0) return false;

        int left = 0, right = m * n - 1;
        while (left <= right) {
            int mid = (left + right) / 2;
            // 一维坐标转换为二维坐标
            int x = mid / n;
            int y = mid % n;
            if (target < matrix[x][y]) {
                right = mid - 1;
            } else if (target > matrix[x][y]) {
                left = mid + 1;
            } else {
                return true;
            }
        }
        return false;
    }
}

JavaScript

矩阵二分

/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
  if (matrix.length === 0 || matrix[0].length === 0) {
    return false
  }

  let m = matrix.length
  let n = matrix[0].length

  let left = 0
  let right = m - 1

  while (left <= right) {
    let mid = Math.trunc((right - left) / 2) + left
    if (matrix[mid][0] < target) {
      left = mid + 1
    } else if (matrix[mid][0] > target) {
      right = mid - 1
    } else {
      return true
    }
  }

  if (right >= 0) {
    let row = right
    left = 0
    right = n - 1

    while (left <= right) {
      let mid = Math.trunc((right - left) / 2) + left
      if (matrix[row][mid] < target) {
        left = mid + 1
      } else if (matrix[row][mid] > target) {
        right = mid - 1
      } else {
        return true
      }
    }
  }

  return false
}

分治法

/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
  if (matrix.length === 0 || matrix[0].length === 0) {
    return false
  }

  let m = matrix.length, n = matrix[0].length
  let i = m - 1, j = 0

  while (i >= 0 && j < n) {
    if (matrix[i][j] < target) {
      j++
    } else if (matrix[i][j] > target) {
      i--
    } else {
      return true
    }
  }

  return false
}
posted @ 2020-10-16 16:00  墨云黑  阅读(182)  评论(0编辑  收藏  举报