0072. Edit Distance (H)
Edit Distance (H)
题目
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
题意
提供三种操作:插入一个字符,删除一个字符,替换一个字符,要求使用最少的操作将一个字符串转变为另一个字符串。
思路
动态规划。\(dp[i][j]\)表示将\(S[0, i - 1]\)转变为\(T[0, j - 1]\)所需的最少操作数。每次比较S和T的最后一个字符,两种情况:
-
\(S[i - 1] == T[j - 1]\)。说明只要将\(S[0, i - 2]\)转变为\(T[0, j - 2]\),有\(dp[i][j]=dp[i-1][j-1]\)
-
\(S[i-1]\ !=\ T[j-1]\)。为了使最后一位相同,有三种操作:
- 将S的最后一位替换为T的最后一位,有\(dp[i][j]=dp[i-1][j-1]+1\)
- 将S的最后一位删去,有\(dp[i][j]=dp[i-1][j]+1\)
- 将T的最后一位插入到S的最后,有\(dp[i][j]=dp[i][j-1]+1\)
取三种情况中的最小值作为\(dp[i][j]\)。
代码实现
Java
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length(), len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 0; i <= len1; i++) dp[i][0] = i;
for (int j = 0; j <= len2; j++) dp[0][j] = j;
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[len1][len2];
}
}