0053. Maximum Subarray (E)
Maximum Subarray (E)
题目
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题意
找到给定数组中的一个子数组,使其和最大。
思路
与连续区间有关的问题很容易想到使用动态规划:dp[i]代表以nums[i]为结尾的各个子数组中的最大和,可以得到表达式 \(dp[i]=max(nums[i],\ dp[i-1]+nums[i])\)。(当然可以直接把原数组当dp数组用,但为了使代码易读还是新建了dp数组)
下面介绍一种直接遍历累加的方法:每次将要累加当前值时,先判断之前已经累加的和是否为负数,如果为负数,当前值加上一个负数只会比自身更小,不如不加,直接重置之前的累加和为0;如果为正数,则可以直接在当前值上加上累加和。这种方法本质上和动态规划是一样的。
分治法:将求当前数组中的最大子数组和这一问题分解为,求出左半边数组中的最大子数组和leftMax、右半边数组中的最大子数组和rightMax、包含左右分割点的中间数组中的最大子数组和midMax,这三者中的最大值即为问题的解。复杂度为\(O(NlogN)\)。
代码实现
Java
动态规划
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
int max = nums[0];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
max = Math.max(max, dp[i]);
}
return max;
}
}
遍历累加
class Solution {
public int maxSubArray(int[] nums) {
int max = nums[0];
int sum = nums[0];
for (int i = 1; i < nums.length; i++) {
// 先判断累加和是否为负数,是则重置为0
sum = Math.max(sum, 0);
sum += nums[i];
max = Math.max(max, sum);
}
return max;
}
}
分治法
class Solution {
public int maxSubArray(int[] nums) {
return divide(nums, 0, nums.length - 1);
}
private int divide(int[] nums, int left, int right) {
// 递归边界,数组中只剩一个数
if (right == left) {
return nums[left];
}
int mid = (left + right) / 2;
// 中间数组必须包含左数组的右端点和右数组的左端点
int leftSum = nums[mid], rightSum = nums[mid + 1];
int sum = 0;
int i = mid;
while (i >= left) {
sum += nums[i--];
leftSum = Math.max(leftSum, sum);
}
sum = 0;
i = mid + 1;
while (i <= right) {
sum += nums[i++];
rightSum = Math.max(rightSum, sum);
}
int midMax = leftSum + rightSum;
int leftMax = divide(nums, left, mid);
int rightMax = divide(nums, mid + 1, right);
return Math.max(midMax, Math.max(leftMax, rightMax));
}
}
JavaScript
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function (nums) {
let max = nums[0]
let sum = nums[0]
for (let i = 1; i < nums.length; i++) {
sum = sum < 0 ? nums[i] : sum + nums[i]
max = Math.max(sum, max)
}
return max
}