0039. Combination Sum (M)
Combination Sum (M)
题目
Given a set of candidate numbers (candidates
) (without duplicates) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
The same repeated number may be chosen from candidates
unlimited number of times.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
题意
给一串数,找出所有和等于目标值的组合,每个数字可以重复使用。
思路
排列组合题很容易想到使用回溯法,但与37. Sudoku Solver不同的是,37只要求在回溯中找到一种符合条件的解即可,而本题需要找到所有符合条件的解,因此这两种回溯法递归函数返回值的含义不同(实际上本题递归函数可以没有返回值,但加上返回值可以在适当的地方直接跳出循环,提高算法的效率)。
回溯法实现:
- 先对数组排序,方便处理。
- 递归边界为 sum >= target,其中当 sum == target 时,需要将该解记录下来。
- 递归主体:每次加入的值不小于上一次加入的值(因为是递增数列所以很容易处理), 加入后进行递归,递归完成后将加入的数去掉。如果递归返回值为false,说明刚刚加入的数已经使整个序列的和达到了最大限值,不用再继续加入更大的值,可以直接跳出。
代码实现
Java
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
List<List<Integer>> ans = new ArrayList<>();
solve(candidates, target, 0, new ArrayList<>(), ans, 0);
return ans;
}
private boolean solve(int[] candidates, int target, int sum, List<Integer> list, List<List<Integer>> ans, int index) {
if (sum > target) {
return false;
}
if (sum == target) {
ans.add(new ArrayList<>(list));
return false;
}
for (int i = index; i < candidates.length; i++) {
list.add(candidates[i]);
boolean flag = solve(candidates, target, sum + candidates[i], list, ans, i);
list.remove(list.size() - 1);
if (!flag) {
break;
}
}
return true;
}
}
JavaScript
/**
* @param {number[]} candidates
* @param {number} target
* @return {number[][]}
*/
var combinationSum = function (candidates, target) {
let res = []
dfs(candidates, 0, 0, target, [], res)
return res
}
let dfs = function (candidates, index, sum, target, list, res) {
if (index === candidates.length || sum > target) {
return
}
if (sum === target) {
res.push([...list])
return
}
list.push(candidates[index])
dfs(candidates, index, sum + candidates[index], target, list, res)
list.pop()
dfs(candidates, index + 1, sum, target, list, res)
}