0011. Container With Most Water (M)
Container With Most Water (M)
题目
Given n non-negative integers \(a_1, a_2, ..., a_n\) , where each represents a point at coordinate \((i, a_i)\). n vertical lines are drawn such that the two endpoints of line i is at \((i, a_i)\) and \((i, 0)\). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1, 8, 6, 2, 5, 4, 8, 3, 7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
题意
给出n个坐标点 \((i, a_i)\) ,每个坐标点与点 \((i, 0)\) 构成一条直线,任选两条直线,与x轴构成一个盛水的容器,求这个容器的最大容积。
思路
暴力法\(O(N^2)\)。
Two Pointers - \(O(N)\) : 设两指针分别指向数组的左右两端,计算容积并更新最大容积,移动高度较短的指针进行下次循环。证明:影响容器容积的因素有两个,即底边长度和较短边高度,对于高度较短的一方,它已经达到了能够构成的最大容积(因为底边长度已经是最大),只有更换较短边才有可能抵消缩短底边长度带来的影响。
具体证明方法:过冰峰 - container-with-most-water(最大蓄水问题)
代码实现
Java
class Solution {
public int maxArea(int[] height) {
int maxVolume = 0;
int i = 0, j = height.length - 1;
while (i < j) {
int volume = (j - i) * Math.min(height[i], height[j]);
maxVolume = Math.max(maxVolume, volume);
if (height[i] < height[j]) {
i++;
} else {
j--;
}
}
return maxVolume;
}
}
JavaScript
/**
* @param {number[]} height
* @return {number}
*/
var maxArea = function (height) {
let left = 0, right = height.length - 1
let max = 0
while (left < right) {
let h = Math.min(height[left], height[right])
max = Math.max(max, (right - left) * h)
if (h === height[left]) {
left++
} else {
right--
}
}
return max
}