加载文件
加载文件
numpy提供了函数用于加载逻辑上可被解释为二维数组的文本文件,格式如下:
数据项1 <分隔符> 数据项2 <分隔符> ... <分隔符> 数据项n
例如:
AA,AA,AA,AA,AA
BB,BB,BB,BB,BB
...
或:
AA:AA:AA:AA:AA
BB:BB:BB:BB:BB
...
调用numpy.loadtxt()函数可以直接读取该文件并且获取ndarray数组对象:
import numpy as np # 直接读取该文件并且获取ndarray数组对象 # 返回值: # unpack=False:返回一个二维数组 # unpack=True: 多个一维数组 np.loadtxt( '../aapl.csv', # 文件路径 delimiter=',', # 分隔符 usecols=(1, 3), # 读取1、3两列 (下标从0开始) unpack=True, # 是否按列拆包 dtype='U10, f8', # 制定返回每一列数组中元素的类型 converters={1:func} # 转换器函数字典 )
案例:读取aapl.csv文件,得到文件中的信息:
import numpy as np import datetime as dt # 日期转换函数 def dmy2ymd(dmy): dmy = str(dmy, encoding='utf-8') time = dt.datetime.strptime(dmy, '%d-%m-%Y').date() t = time.strftime('%Y-%m-%d') return t dates, opening_prices,highest_prices, \ lowest_prices, closeing_pric es = np.loadtxt( '../data/aapl.csv', # 文件路径 delimiter=',', # 分隔符 usecols=(1, 3, 4, 5, 6), # 读取1、3两列 (下标从0开始) unpack=True, dtype='M8[D], f8, f8, f8, f8', # 制定返回每一列数组中元素的类型 converters={1:dmy2ymd})
1.绘制dates与收盘价的折线图:
import numpy as np import datetime as dt import matplotlib.pyplot as mp import matplotlib.dates as md # 绘制k线图,x为日期 mp.figure('APPL K', facecolor='lightgray') mp.title('APPL K') mp.xlabel('Day', fontsize=12) mp.ylabel('Price', fontsize=12) #拿到坐标轴 ax = mp.gca() #设置主刻度定位器为周定位器(每周一显示主刻度文本) ax.xaxis.set_major_locator( md.WeekdayLocator(byweekday=md.MO) ) ax.xaxis.set_major_formatter(md.DateFormatter('%d %b %Y')) #设置次刻度定位器为日定位器 ax.xaxis.set_minor_locator(md.DayLocator()) mp.tick_params(labelsize=8) dates = dates.astype(md.datetime.datetime) mp.plot(dates, opening_prices, color='dodgerblue', linestyle='-') mp.gcf().autofmt_xdate() mp.show()