【bzoj2300】【Luogu P2521】 [HAOI2011]防线修建 动态凸包,平衡树,Set
一句话题意:给你一个凸包,每次可以插入一个点或者询问周长。
动态凸包裸题嘛,用\(Set\)实现。最初每个点坐标做乘三处理,便于取初始三角形的重心作为凸包判定原点。
#include <bits/stdc++.h>
using namespace std;
const int N = 500000 + 5;
const double eps = 1e-8;
int n, m, x, y, q, px[N], py[N], ban[N];
struct Point {
int x, y; double ang;
}o;
Point operator - (Point lhs, Point rhs) {
return (Point) {lhs.x - rhs.x, lhs.y - rhs.y};
}
double disPP (Point lhs, Point rhs) {
return hypot (abs (lhs.x - rhs.x), abs (lhs.y - rhs.y));
}
bool operator < (Point lhs, Point rhs) {
if (fabs (lhs.ang - rhs.ang) > eps) {
return lhs.ang < rhs.ang;
} else {
return disPP (lhs, o) < disPP (rhs, o);
}
}
int Cross (Point lhs, Point rhs) {
return lhs.x * rhs.y - lhs.y * rhs.x;
}
struct Query {int opt, x;}qry[N];
set <Point> s;
typedef set <Point> :: iterator Iter;
double cur_ans = 0;
stack <double> ans;
Iter Prev (Iter it) {
return it == s.begin () ? (--s.end ()) : (--it);
}
Iter Next (Iter it) {
return (++it) == s.end () ? s.begin () : it;
}
void Insert (Point P) {
Iter nxt = s.lower_bound (P);
if (nxt == s.end ()) {
nxt = s.begin ();
}
Iter pre = Prev (nxt);
if (Cross (P - *pre, *nxt - P) <= 0) {
return; // 已经在凸包里面
}
s.insert (P);
Iter i, j, cur = s.find (P);
i = Prev (cur), j = Prev (i);
pre = Prev (cur), nxt = Next (cur);
cur_ans += disPP (*cur, *pre);
cur_ans += disPP (*cur, *nxt);
cur_ans -= disPP (*pre, *nxt);
while (Cross (*i - *j, *cur - *i) <= 0) {
cur_ans -= disPP (*cur, *i);
cur_ans -= disPP (*i, *j);
cur_ans += disPP (*cur, *j);
s.erase (i); i = j; j = Prev (j);
}
i = Next (cur), j = Next (i);
while (Cross (*i - *cur, *j - *i) <= 0) {
cur_ans -= disPP (*cur, *i);
cur_ans -= disPP (*i, *j);
cur_ans += disPP (*cur, *j);
s.erase (i); i = j; j = Next (j);
}
}
int main () {
// freopen ("data.in", "r", stdin);
cin >> n >> x >> y >> m;
x *= 3, y *= 3, n *= 3;
for (int i = 1; i <= m; ++i) {
cin >> px[i] >> py[i];
px[i] *= 3; py[i] *= 3;
}
cin >> q;
for (int i = 1; i <= q; ++i) {
cin >> qry[i].opt;
if (qry[i].opt == 1) {
cin >> qry[i].x;
ban[qry[i].x] = true;
}
}
o = (Point) {(n + x) / 3, y / 3, 0};
Point P1 = (Point) {0, 0, atan2 (0 - o.y, 0 - o.x)};
Point P2 = (Point) {n, 0, atan2 (0 - o.y, n - o.x)};
Point P3 = (Point) {x, y, atan2 (y - o.y, x - o.x)};
s.insert (P1);
s.insert (P2); cur_ans += disPP (P2, P3);
s.insert (P3); cur_ans += disPP (P1, P3);
for (int i = 1; i <= m; ++i) {
if (!ban[i]) {
Insert ((Point) {px[i], py[i], atan2 (py[i] - o.y, px[i] - o.x)});
}
}
for (int i = q; i >= 1; --i) {
if (qry[i].opt == 1) {
int t = qry[i].x;
Insert ((Point) {px[t], py[t], atan2 (py[t] - o.y, px[t] - o.x)});
} else {
ans.push (cur_ans);
}
}
while (!ans.empty ()) {
cout << fixed << setprecision (2) << ans.top () / 3.0 << endl;
ans.pop ();
}
}