【BZOJ1492】【Luogu P4027】 [NOI2007]货币兑换 CDQ分治,平衡树,动态凸包

斜率在转移顺序下不满足单调性的斜率优化\(DP\),用动态凸包来维护。送命题。

简化版题意:每次在凸包上插入一个点,以及求一条斜率为\(K\)的直线与当前凸包的交点。思路简单实现困难。

\(P.s\),不是特别建议用\(Set\)来维护动态凸包,万一中间哪一点功能实现\(STL\)没有提供就\(GG\)了。(比如要有两种比较运算符。)本人因此重构了三次\(:)\)

代码来源:黄学长的代码的魔改版。

#include <bits/stdc++.h>
using namespace std;

const double eps = 1e-8;
const int N = 100000 + 5;

int n, top, sta[N]; double f[N];

struct point {
	double x, y, a, b, k, rate; int w, id;
}p[N], t[N];

double getk (int a, int b) {
	if (b == 0) return -1e20;
	if (fabs (p[a].x - p[b].x) < eps) {
		return 1e20;
	} else {
		return (p[b].y - p[a].y) / (p[b].x - p[a].x);
	}
}

bool operator < (point a, point b) {
	return a.k > b.k;
}

void solve (int l, int r) {
	if (l == r) {
		f[l] = max (f[l], f[l - 1]);
		p[l].y = f[l] / (p[l].a * p[l].rate + p[l].b);
		p[l].x = p[l].rate * p[l].y;
		return;
	}//分治到底了显然我们可以直接计算出结果 
	int l1, l2, mid = (l + r) >> 1, j = 1;
//============================================================================
	l1 = l; l2 = mid + 1;
	for (int i = l; i <= r; i++) {
	    if (p[i].id <= mid) {
			t[l1++] = p[i];
		} else {
			t[l2++] = p[i];
		}
	}
    for (int i = l; i <= r; i++) {
		p[i] = t[i];
	}
	solve (l, mid);//递归左边
	top = 0;
	for (int i = l; i <= mid; i++) {
		while (top > 1 && getk (sta[top - 1], sta[top]) < getk (sta[top - 1], i) + eps) {
		    top--;
		}
		sta[++top] = i;
    }//左边维护一个凸包
    sta[++top] = 0;
    for (int i = mid + 1; i <= r; i++) {
    	while (j < top && getk (sta[j], sta[j + 1]) + eps > p[i].k) {
			j++;
		}//用左边的点作为决策更新右边 
        f[p[i].id] = max (f[p[i].id], p[sta[j]].x * p[i].a + p[sta[j]].y * p[i].b);
	}
	solve (mid + 1, r);//递归右边 
	l1 = l; l2 = mid + 1;
	for (int i = l; i <= r; i++) {
		if (((p[l1].x < p[l2].x || (fabs(p[l1].x - p[l2].x) < eps && p[l1].y < p[l2].y)) || l2 > r) && l1 <= mid) {
			t[i] = p[l1++];
		} else {
			t[i] = p[l2++];
		}
	}
    for (int i = l; i <= r; i++) p[i] = t[i];
}

int main () {
//	freopen ("data.in", "r", stdin);
	cin >> n >> f[0];
	for (int i = 1; i <= n; i++) {
		cin >> p[i].a >> p[i].b >> p[i].rate;
		p[i].k = -p[i].a / p[i].b; p[i].id = i;
	}
	sort (p + 1, p + n + 1);//这里按照斜率进行排序,保证分治的每一块斜率是有序的 
	solve (1, n);
	cout << fixed << setprecision (10) << f[n] << endl;
}
posted @ 2019-05-27 16:01  maomao9173  阅读(187)  评论(1编辑  收藏  举报