Luogu P4768 [NOI2018]归程
题目链接 \(Click\) \(Here\)
\(Kruskal\)重构树的好题。想到的话就很好写,想不到乱搞的难度反而相当高。
按照点的水位,建出来满足小根队性质的\(Kruskal\)重构树,这样一个点的子树里的点就是所有可以开车到达的点。做一遍最短路预处理,然后树上求一个子树\(min\),就可以得到子树里面的点到点\(1\)的最短距离。注意需要初始化。
#include <bits/stdc++.h>
using namespace std;
const int N = 800010;
const int INF = 0x7fffffff;
struct _edge {int u, v, l, a;}_e[N];
bool cmp (_edge lhs, _edge rhs) {
return lhs.a > rhs.a;
}
struct Graph {
int cnt, head[N];
struct edge {
int nxt, to, w;
}e[N << 1];
void Init () {
cnt = 0;
memset (head, 0, sizeof (head));
}
void add_edge (int u, int v, int w) {
e[++cnt] = (edge) {head[u], v, w}; head[u] = cnt;
}
}G, krus;
int read () {
int s = 0, w = 1, ch = getchar ();
while ('9' < ch || ch < '0') {
if (ch == '-') w = -1;
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * w;
}
int T, n, m, Q, K, S, tot, fa[N], _high[N];
int find (int x) {
return fa[x] == x ? x : fa[x] = find (fa[x]);
}
int deep[N], fafa[N][20];
int dis[N], mindis[N];
void dfs (int u, int fa) {
fafa[u][0] = fa;
mindis[u] = krus.head[u] == 0 ? dis[u] : INF;
deep[u] = deep[fa] + 1;
for (int i = 1; (1 << i) <= deep[u]; ++i) {
fafa[u][i] = fafa[fafa[u][i - 1]][i - 1];
}
for (int i = krus.head[u]; i; i = krus.e[i].nxt) {
int v = krus.e[i].to;
dfs (v, u);
mindis[u] = min (mindis[u], mindis[v]);
}
}
void kruskal () {
sort (_e + 1, _e + 1 + m, cmp);
tot = n;
for (int i = 1; i <= n; ++i) fa[i] = i;
for (int i = 1; i <= m; ++i) {
int u = find (_e[i].u);
int v = find (_e[i].v);
if (u != v) {
int T = ++tot;
_high[T] = _e[i].a;
krus.add_edge (T, u, 0);
krus.add_edge (T, v, 0);
fa[T] = fa[u] = fa[v] = T;
}
}
dfs (tot, 0);
}
struct Node {
int pos, dis;
bool operator < (Node rhs) const {
return dis > rhs.dis;
}
};
priority_queue <Node> q;
void dijkstra () {
for (int i = 1; i <= n; ++i) dis[i] = i == 1 ? 0 : INF;
q.push ((Node) {1, 0});
while (!q.empty ()) {
Node u = q.top (); q.pop ();
if (dis[u.pos] < u.dis) continue;
for (int i = G.head[u.pos]; i; i = G.e[i].nxt) {
int v = G.e[i].to;
if (dis[v] > dis[u.pos] + G.e[i].w) {
dis[v] = dis[u.pos] + G.e[i].w;
q.push ((Node) {v, dis[v]});
}
}
}
}
int query (int u, int p) {
//u 出发节点 p 水位线
for (int i = 19; i >= 0; --i) {
if (_high[fafa[u][i]] > p) {
u = fafa[u][i];
}
}
// printf ("u = %d\n", u);
return mindis[u];
}
void Init () {
G.Init ();
krus.Init ();
memset (fafa, 0, sizeof (fafa));
memset (_high, 0, sizeof (_high));
memset (mindis, 0, sizeof (mindis));
}
int main () {
//freopen ("data.in", "r", stdin);
T = read ();
while (T--) {
Init ();
printf ("T = %d\n", T);
n = read (), m = read ();
for (int i = 1; i <= m; ++i) {
_e[i].u = read ();
_e[i].v = read ();
_e[i].l = read ();
_e[i].a = read ();
G.add_edge (_e[i].u, _e[i].v, _e[i].l);
G.add_edge (_e[i].v, _e[i].u, _e[i].l); //建双向边
}
int lastans = 0;
dijkstra ();
kruskal ();
Q = read (), K = read (), S = read ();
for (int i = 1; i <= Q; ++i) {
static int v, p, v0, p0;
v0 = read (), p0 = read ();
v = (v0 + K * lastans - 1) % n + 1;
p = (p0 + K * lastans) % (S + 1);
printf ("%d\n", lastans = query (v, p));
}
}
}