Java实现缓存(LRU,FIFO)

现在软件或者网页的并发量越来越大了,大量请求直接操作数据库会对数据库造成很大的压力,处理大量连接和请求就会需要很长时间,但是实际中百分之80的数据是很少更改的,这样就可以引入缓存来进行读取,减少数据库的压力。

常用的缓存有Redis和memcached,但是有时候一些小场景就可以直接使用Java实现缓存,就可以满足这部分服务的需求。

缓存主要有LRU和FIFO,LRU是Least Recently Used的缩写,即最近最久未使用,FIFO就是先进先出,下面就使用Java来实现这两种缓存。

LRU

LRU缓存的思想

  • 固定缓存大小,需要给缓存分配一个固定的大小。
  • 每次读取缓存都会改变缓存的使用时间,将缓存的存在时间重新刷新。
  • 需要在缓存满了后,将最近最久未使用的缓存删除,再添加最新的缓存。

按照如上思想,可以使用LinkedHashMap来实现LRU缓存。

这是LinkedHashMap的一个构造函数,传入的第三个参数accessOrder为true的时候,就按访问顺序对LinkedHashMap排序,为false的时候就按插入顺序,默认是为false的。
当把accessOrder设置为true后,就可以将最近访问的元素置于最前面,这样就可以满足上述的第二点。

/**
 * Constructs an empty <tt>LinkedHashMap</tt> instance with the
 * specified initial capacity, load factor and ordering mode.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @param  accessOrder     the ordering mode - <tt>true</tt> for
 *         access-order, <tt>false</tt> for insertion-order
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public LinkedHashMap(int initialCapacity,
                     float loadFactor,
                     boolean accessOrder) {
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;
}

这是LinkedHashMap中另外一个方法,当返回true的时候,就会remove其中最久的元素,可以通过重写这个方法来控制缓存元素的删除,当缓存满了后,就可以通过返回true删除最久未被使用的元素,达到LRU的要求。这样就可以满足上述第三点要求。

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

由于LinkedHashMap是为自动扩容的,当table数组中元素大于Capacity * loadFactor的时候,就会自动进行两倍扩容。但是为了使缓存大小固定,就需要在初始化的时候传入容量大小和负载因子。
为了使得到达设置缓存大小不会进行自动扩容,需要将初始化的大小进行计算再传入,可以将初始化大小设置为(缓存大小 / loadFactor) + 1,这样就可以在元素数目达到缓存大小时,也不会进行扩容了。这样就解决了上述第一点问题。

通过上面分析,实现下面的代码

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set;

public class LRU1<K, V> {
    private final int MAX_CACHE_SIZE;
    private final float DEFAULT_LOAD_FACTORY = 0.75f;

    LinkedHashMap<K, V> map;

    public LRU1(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        int capacity = (int)Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTORY) + 1;
        /*
         * 第三个参数设置为true,代表linkedlist按访问顺序排序,可作为LRU缓存
         * 第三个参数设置为false,代表按插入顺序排序,可作为FIFO缓存
         */
        map = new LinkedHashMap<K, V>(capacity, DEFAULT_LOAD_FACTORY, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                return size() > MAX_CACHE_SIZE;
            }
        };
    }

    public synchronized void put(K key, V value) {
        map.put(key, value);
    }

    public synchronized V get(K key) {
        return map.get(key);
    }

    public synchronized void remove(K key) {
        map.remove(key);
    }

    public synchronized Set<Map.Entry<K, V>> getAll() {
        return map.entrySet();
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        for (Map.Entry<K, V> entry : map.entrySet()) {
            stringBuilder.append(String.format("%s: %s  ", entry.getKey(), entry.getValue()));
        }
        return stringBuilder.toString();
    }

    public static void main(String[] args) {
        LRU1<Integer, Integer> lru1 = new LRU1<>(5);
        lru1.put(1, 1);
        lru1.put(2, 2);
        lru1.put(3, 3);
        System.out.println(lru1);
        lru1.get(1);
        System.out.println(lru1);
        lru1.put(4, 4);
        lru1.put(5, 5);
        lru1.put(6, 6);
        System.out.println(lru1);
    }
}

运行结果:

从运行结果中可以看出,实现了LRU缓存的思想。

接着使用HashMap和链表来实现LRU缓存。

主要的思想和上述基本一致,每次添加元素或者读取元素就将元素放置在链表的头,当缓存满了之后,就可以将尾结点元素删除,这样就实现了LRU缓存。

这种方法中是通过自己编写代码移动结点和删除结点,为了防止缓存大小超过限制,每次进行put的时候都会进行检查,若缓存满了则删除尾部元素。

import java.util.HashMap;

/**
 * 使用cache和链表实现缓存
 */
public class LRU2<K, V> {
    private final int MAX_CACHE_SIZE;
    private Entry<K, V> head;
    private Entry<K, V> tail;

    private HashMap<K, Entry<K, V>> cache;

    public LRU2(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        cache = new HashMap<>();
    }

    public void put(K key, V value) {
        Entry<K, V> entry = getEntry(key);
        if (entry == null) {
            if (cache.size() >= MAX_CACHE_SIZE) {
                cache.remove(tail.key);
                removeTail();
            }
            entry = new Entry<>();
            entry.key = key;
            entry.value = value;
            moveToHead(entry);
            cache.put(key, entry);
        } else {
            entry.value = value;
            moveToHead(entry);
        }
    }

    public V get(K key) {
        Entry<K, V> entry = getEntry(key);
        if (entry == null) {
            return null;
        }
        moveToHead(entry);
        return entry.value;
    }

    public void remove(K key) {
        Entry<K, V> entry = getEntry(key);
        if (entry != null) {
            if (entry == head) {
                Entry<K, V> next = head.next;
                head.next = null;
                head = next;
                head.pre = null;
            } else if (entry == tail) {
                Entry<K, V> prev = tail.pre;
                tail.pre = null;
                tail = prev;
                tail.next = null;
            } else {
                entry.pre.next = entry.next;
                entry.next.pre = entry.pre;
            }
            cache.remove(key);
        }
    }

    private void removeTail() {
        if (tail != null) {
            Entry<K, V> prev = tail.pre;
            if (prev == null) {
                head = null;
                tail = null;
            } else {
                tail.pre = null;
                tail = prev;
                tail.next = null;
            }
        }
    }

    private void moveToHead(Entry<K, V> entry) {
        if (entry == head) {
            return;
        }
        if (entry.pre != null) {
            entry.pre.next = entry.next;
        }
        if (entry.next != null) {
            entry.next.pre = entry.pre;
        }
        if (entry == tail) {
            Entry<K, V> prev = entry.pre;
            if (prev != null) {
                tail.pre = null;
                tail = prev;
                tail.next = null;
            }
        }

        if (head == null || tail == null) {
            head = tail = entry;
            return;
        }

        entry.next = head;
        head.pre = entry;
        entry.pre = null;
        head = entry;
    }

    private Entry<K, V> getEntry(K key) {
        return cache.get(key);
    }

    private static class Entry<K, V> {
        Entry<K, V> pre;
        Entry<K, V> next;
        K key;
        V value;
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        Entry<K, V> entry = head;
        while (entry != null) {
            stringBuilder.append(String.format("%s:%s ", entry.key, entry.value));
            entry = entry.next;
        }
        return stringBuilder.toString();
    }

    public static void main(String[] args) {
        LRU2<Integer, Integer> lru2 = new LRU2<>(5);
        lru2.put(1, 1);
        System.out.println(lru2);
        lru2.put(2, 2);
        System.out.println(lru2);
        lru2.put(3, 3);
        System.out.println(lru2);
        lru2.get(1);
        System.out.println(lru2);
        lru2.put(4, 4);
        lru2.put(5, 5);
        lru2.put(6, 6);
        System.out.println(lru2);
    }
}

运行结果:

FIFO

FIFO就是先进先出,可以使用LinkedHashMap进行实现。
当第三个参数传入为false或者是默认的时候,就可以实现按插入顺序排序,就可以实现FIFO缓存了。

/**
 * Constructs an empty <tt>LinkedHashMap</tt> instance with the
 * specified initial capacity, load factor and ordering mode.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @param  accessOrder     the ordering mode - <tt>true</tt> for
 *         access-order, <tt>false</tt> for insertion-order
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public LinkedHashMap(int initialCapacity,
                     float loadFactor,
                     boolean accessOrder) {
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;
}

实现代码跟上述使用LinkedHashMap实现LRU的代码基本一致,主要就是构造函数的传值有些不同。

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set;

public class LRU1<K, V> {
    private final int MAX_CACHE_SIZE;
    private final float DEFAULT_LOAD_FACTORY = 0.75f;

    LinkedHashMap<K, V> map;

    public LRU1(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        int capacity = (int)Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTORY) + 1;
        /*
         * 第三个参数设置为true,代表linkedlist按访问顺序排序,可作为LRU缓存
         * 第三个参数设置为false,代表按插入顺序排序,可作为FIFO缓存
         */
        map = new LinkedHashMap<K, V>(capacity, DEFAULT_LOAD_FACTORY, false) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                return size() > MAX_CACHE_SIZE;
            }
        };
    }

    public synchronized void put(K key, V value) {
        map.put(key, value);
    }

    public synchronized V get(K key) {
        return map.get(key);
    }

    public synchronized void remove(K key) {
        map.remove(key);
    }

    public synchronized Set<Map.Entry<K, V>> getAll() {
        return map.entrySet();
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        for (Map.Entry<K, V> entry : map.entrySet()) {
            stringBuilder.append(String.format("%s: %s  ", entry.getKey(), entry.getValue()));
        }
        return stringBuilder.toString();
    }

    public static void main(String[] args) {
        LRU1<Integer, Integer> lru1 = new LRU1<>(5);
        lru1.put(1, 1);
        lru1.put(2, 2);
        lru1.put(3, 3);
        System.out.println(lru1);
        lru1.get(1);
        System.out.println(lru1);
        lru1.put(4, 4);
        lru1.put(5, 5);
        lru1.put(6, 6);
        System.out.println(lru1);
    }
}

运行结果:

以上就是使用Java实现这两种缓存的方式,从中可以看出,LinkedHashMap实现缓存较为容易,因为底层函数对此已经有了支持,自己编写链表实现LRU缓存也是借鉴了LinkedHashMap中实现的思想。在Java中不只是这两种数据结构可以实现缓存,比如ConcurrentHashMap、WeakHashMap在某些场景下也是可以作为缓存的,到底用哪一种数据结构主要是看场景再进行选择,但是很多思想都是可以通用的。

posted on 2017-12-06 16:24  毛会懂  阅读(767)  评论(0编辑  收藏  举报