图像分析------直方图分析 分类: 视频图像处理 2015-07-24 10:03 33人阅读 评论(0) 收藏
直方图介绍
强度直方图图形化显示不同的像素值在不同的强度值上的出现频率,对于灰度图像来说强度
范围为[0~255]之间,对于RGB的彩色图像可以独立显示三种颜色的强度直方图。强度直方
图是用来寻找灰度图像二值化阈值常用而且是有效的手段之一,如果一幅灰度图像的直方图
显示为两个波峰,则二值化阈值应该是这两个波峰之间的某个灰度值。同时强度直方图是调
整图像对比度的重要依据
直方图实现方法:
对一幅灰度图像从上到下,从左到右扫描每个像素值,在每个灰度值上计算像素数目,以这
些数据为基础完成图像直方图的绘制。
运行效果如下:
程序实现:
1. 首先对一幅RGB图像完成灰度转换,转换代码如下:
2. 初始化直方图数据数组int[256] 因为灰度值的范围为0~255
3. 扫描灰度图像,完成强度数据计算。
4. 使用Java 2D绘制直方图
直方图实现源代码:
- package com.gloomyfish.image.analysis;
- import java.awt.Color;
- import java.awt.Graphics2D;
- import java.awt.image.BufferedImage;
- public class HistogramAnalysisAlg {
- private BufferedImage srcImage;
- private BufferedImage histogramImage;
- private int size = 280;
- public HistogramAnalysisAlg(BufferedImage srcImage){
- histogramImage = new BufferedImage(size,size, BufferedImage.TYPE_4BYTE_ABGR);
- this.srcImage = srcImage;
- }
- public BufferedImage getHistogram() {
- int[] inPixels = new int[srcImage.getWidth()*srcImage.getHeight()];
- int[] intensity = new int[256];
- for(int i=0; i<intensity.length; i++) {
- intensity[i] = 0;
- }
- getRGB( srcImage, 0, 0, srcImage.getWidth(), srcImage.getHeight(), inPixels );
- int index = 0;
- for(int row=0; row<srcImage.getHeight(); row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int col=0; col<srcImage.getWidth(); col++) {
- index = row * srcImage.getWidth() + col;
- ta = (inPixels[index] >> 24) & 0xff;
- tr = (inPixels[index] >> 16) & 0xff;
- tg = (inPixels[index] >> 8) & 0xff;
- tb = inPixels[index] & 0xff;
- int gray = (int)(0.299 * (double)tr + 0.587 * (double)tg + 0.114 * (double)tb);
- intensity[gray]++;
- }
- }
- // draw XY Axis lines
- Graphics2D g2d = histogramImage.createGraphics();
- g2d.setPaint(Color.BLACK);
- g2d.fillRect(0, 0, size, size);
- g2d.setPaint(Color.WHITE);
- g2d.drawLine(5, 250, 265, 250);
- g2d.drawLine(5, 250, 5, 5);
- // scale to 200
- g2d.setPaint(Color.GREEN);
- int max = findMaxValue(intensity);
- float rate = 200.0f/((float)max);
- int offset = 2;
- for(int i=0; i<intensity.length; i++) {
- int frequency = (int)(intensity[i] * rate);
- g2d.drawLine(5 + offset + i, 250, 5 + offset + i, 250-frequency);
- }
- // X Axis Gray intensity
- g2d.setPaint(Color.RED);
- g2d.drawString("Gray Intensity", 100, 270);
- return histogramImage;
- }
- private int findMaxValue(int[] intensity) {
- int max = -1;
- for(int i=0; i<intensity.length; i++) {
- if(max < intensity[i]) {
- max = intensity[i];
- }
- }
- return max;
- }
- /**
- * A convenience method for getting ARGB pixels from an image. This tries to avoid the performance
- * penalty of BufferedImage.getRGB unmanaging the image.
- */
- public int[] getRGB( BufferedImage image, int x, int y, int width, int height, int[] pixels ) {
- int type = image.getType();
- if ( type == BufferedImage.TYPE_INT_ARGB || type == BufferedImage.TYPE_INT_RGB )
- return (int [])image.getRaster().getDataElements( x, y, width, height, pixels );
- return image.getRGB( x, y, width, height, pixels, 0, width );
- }
- /**
- * A convenience method for setting ARGB pixels in an image. This tries to avoid the performance
- * penalty of BufferedImage.setRGB unmanaging the image.
- */
- public void setRGB( BufferedImage image, int x, int y, int width, int height, int[] pixels ) {
- int type = image.getType();
- if ( type == BufferedImage.TYPE_INT_ARGB || type == BufferedImage.TYPE_INT_RGB )
- image.getRaster().setDataElements( x, y, width, height, pixels );
- else
- image.setRGB( x, y, width, height, pixels, 0, width );
- }
- }
测试代码如下:
- package com.gloomyfish.image.analysis;
- import java.awt.Dimension;
- import java.awt.Graphics;
- import java.awt.Graphics2D;
- import java.awt.MediaTracker;
- import java.awt.image.BufferedImage;
- import java.io.File;
- import java.io.IOException;
- import javax.imageio.ImageIO;
- import javax.swing.JComponent;
- import javax.swing.JFileChooser;
- import javax.swing.JFrame;
- public class ImageAnalysisUI extends JComponent {
- /**
- *
- */
- private static final long serialVersionUID = 1518574788794973574L;
- private BufferedImage rawImg;
- private BufferedImage modImg;
- private MediaTracker tracker;
- private Dimension mySize;
- public ImageAnalysisUI(File f) {
- try {
- rawImg = ImageIO.read(f);
- HistogramAnalysisAlg filter = new HistogramAnalysisAlg(rawImg);
- modImg = filter.getHistogram();
- } catch (IOException e1) {
- e1.printStackTrace();
- }
- tracker = new MediaTracker(this);
- tracker.addImage(rawImg, 1);
- // blocked 10 seconds to load the image data
- try {
- if (!tracker.waitForID(1, 10000)) {
- System.out.println("Load error.");
- System.exit(1);
- }// end if
- } catch (InterruptedException e) {
- e.printStackTrace();
- System.exit(1);
- }// end catch
- mySize = new Dimension(2*rawImg.getWidth() + 20, rawImg.getHeight()*2);
- JFrame imageFrame = new JFrame("Gloomyfish - Image Analysis");
- imageFrame.getContentPane().add(this);
- imageFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
- imageFrame.pack();
- imageFrame.setVisible(true);
- }
- public void paint(Graphics g) {
- Graphics2D g2 = (Graphics2D) g;
- g2.drawImage(rawImg, 0, 0, rawImg.getWidth(), rawImg.getHeight(), null);
- g2.drawImage(modImg, rawImg.getWidth()+10, 0, modImg.getWidth(), modImg.getHeight(), null);
- g2.drawString("source image", 10, rawImg.getHeight() +10);
- g2.drawString("connected component labeled area", 10 + modImg.getWidth(), rawImg.getHeight() +10);
- }
- public Dimension getPreferredSize() {
- return mySize;
- }
- public Dimension getMinimumSize() {
- return mySize;
- }
- public Dimension getMaximumSize() {
- return mySize;
- }
- public static void main(String[] args) {
- JFileChooser chooser = new JFileChooser();
- chooser.showOpenDialog(null);
- File f = chooser.getSelectedFile();
- new ImageAnalysisUI(f);
- }
- }
版权声明:本文为博主原创文章,未经博主允许不得转载。