二叉树递归分形,牛顿分形图案 分类: 视频图像处理 2015-07-24 10:16 50人阅读 评论(0) 收藏
1. 牛顿分形(Newton Fractal)
在复数域上使用牛顿迭代生成分形图像,函数公式F(z) = z^3 – 1在复数域上面有
三个根,一个是1,另外两个分别是复数-0.5+0.87i 与 -0.5 – 0.87i根据计算出来根
的值不同转换为RGB三种不同的颜色,根据迭代次数的多少设置颜色值的大小,
牛顿分形的算法代码如下:
曼德尔波特分形算法如下:递归分形树代码如下:
在复数域上使用牛顿迭代生成分形图像,函数公式F(z) = z^3 – 1在复数域上面有
三个根,一个是1,另外两个分别是复数-0.5+0.87i 与 -0.5 – 0.87i根据计算出来根
的值不同转换为RGB三种不同的颜色,根据迭代次数的多少设置颜色值的大小,
即颜色强度。
2. 曼德布罗特集合分形(Mandelbort Set Fractal) 使用复数函数公式F(z) = z^2 + c其中
c是一个复数
3. 递归分形树 (recursion tree)– 类似二叉树的递归生成树干,同时不断的缩小树干长
度,根据递归次数不同与角度不同可以得到不同的递归分形树,注意Java最大栈
深度是64,过度的归次数可能导致java栈溢出错误。递归次数建议不要超过32.
根据角度不同,可以生成不同的二叉递归树。
牛顿迭代与曼德尔波特分形算法需要复数范围内的加减乘除计算,请先google一下
然后就知道啦。本人实现的复数计算的类如下:
- package com.gloomyfish.fractal;
- public class Complex
- {
- private float real;
- private float imaginary;
- public Complex(float paramFloat1, float paramFloat2)
- {
- this.real = paramFloat1;
- this.imaginary = paramFloat2;
- }
- public float real()
- {
- return this.real;
- }
- public float imaginary()
- {
- return this.imaginary;
- }
- public float modulus()
- {
- return (float)Math.sqrt(this.real * this.real + this.imaginary * this.imaginary);
- }
- public boolean equal(Complex paramComplex)
- {
- return ((this.real == paramComplex.real()) && (this.imaginary == paramComplex.imaginary()));
- }
- public Complex add(Complex paramComplex)
- {
- return new Complex(this.real + paramComplex.real(), this.imaginary + paramComplex.imaginary());
- }
- public Complex subtract(Complex paramComplex)
- {
- return new Complex(this.real - paramComplex.real(), this.imaginary - paramComplex.imaginary());
- }
- public Complex multiply(Complex paramComplex)
- {
- return new Complex(this.real * paramComplex.real() - (this.imaginary * paramComplex.imaginary()), this.real * paramComplex.imaginary() + this.imaginary * paramComplex.real());
- }
- public Complex divide(Complex paramComplex)
- {
- float f1 = paramComplex.real() * paramComplex.real() + paramComplex.imaginary() * paramComplex.imaginary();
- float f2 = (this.real * paramComplex.real() + this.imaginary * paramComplex.imaginary()) / f1;
- float f3 = (this.imaginary * paramComplex.real() - (this.real * paramComplex.imaginary())) / f1;
- return new Complex(f2, f3);
- }
- public String toString()
- {
- String str = (this.imaginary >= 0.0F) ? "+" : "-";
- return this.real + str + Math.abs(this.imaginary) + "i";
- }
- }
- package com.gloomyfish.fractal;
- public class NewtonFractal extends Fractal {
- private static final Complex ONE = new Complex(1.0F, 0.0F);
- private static final Complex THREE = new Complex(3.0F, 0.0F);
- public NewtonFractal(int widthImage, int heightImage) {
- super(widthImage, heightImage);
- // default start point and end point
- // primary group,
- this.x1 = -1.0f;
- this.y1 = -1.0f;
- this.x2 = 1.0f;
- this.y2 = 1.0f;
- // second group
- // this.x1 = -3.0f;
- // this.y1 = -1.76f;
- // this.x2 = 3.0f;
- // this.y2 = 1.76f;
- // end comment
- }
- @Override
- public void BuildFractal() {
- int[] inPixels = new int[getWidth()*getHeight()];
- getRGB(fractalImage, 0, 0, getWidth(), getHeight(), inPixels );
- int index = 0;
- float xDelta = ((x2 - x1) / (float)width);
- float yDelta = ((y2 - y1) / (float)height);
- for(int row=0; row<height; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int col=0; col<width; col++) {
- Complex localComplex2;
- float f1 = this.x1 + col * xDelta;
- float f2 = this.y2 - (row * yDelta);
- Complex localComplex1 = new Complex(f1, f2);
- int k = 0;
- do {
- Complex localComplex3 = localComplex1.multiply(localComplex1);
- Complex localComplex4 = localComplex3.multiply(localComplex1);
- localComplex2 = localComplex1;
- localComplex1 = localComplex1.subtract(localComplex4.subtract(ONE).divide(THREE.multiply(localComplex3)));
- }
- while ((++k < MAX_ITERS) && (!(localComplex1.equal(localComplex2))));
- int l = 20 * k % 10; // keep value scope between 0 and 255
- // if root is 1 then
- if (localComplex1.real() > 0.0F)
- {
- tr = tg = l;
- tb = 255;
- }
- // if root is second complex = -0.5+0.87i
- else if (localComplex1.imaginary() > 0.0F)
- {
- tr = tb = l;
- tg = 255;
- }
- else
- {
- tr = 255;
- tg = tb = l;
- }
- index = row * width + col;
- ta = 255;
- inPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
- }
- }
- setRGB(fractalImage, 0, 0, getWidth(), getHeight(), inPixels);
- }
- }
- package com.gloomyfish.fractal;
- public class MandelbrotSetFractal extends Fractal {
- private float delta = 0.01f;
- public MandelbrotSetFractal(int widthImage, int heightImage) {
- super(widthImage, heightImage);
- this.delta = 0.01F;
- this.x1 = (-(this.width / 2) * this.delta);
- this.y1 = (-(this.height / 2) * this.delta);
- this.x2 = (-this.x1);
- this.y2 = (-this.y1);
- }
- @Override
- public void BuildFractal() {
- int[] inPixels = new int[getWidth()*getHeight()];
- getRGB(fractalImage, 0, 0, getWidth(), getHeight(), inPixels );
- int index = 0;
- for(int row=0; row<height; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- float f1 = y2 - (row * delta);
- for(int col=0; col<width; col++) {
- float f5;
- int i1;
- float f2 = x1 + col * delta;
- Complex localComplex1 = new Complex(f2, f1);
- Complex localComplex2 = new Complex(0.0F, 0.0F);
- int k = 0;
- int l = 0;
- do
- {
- localComplex2 = localComplex2.multiply(localComplex2).add(localComplex1);
- f5 = localComplex2.modulus();
- k = (f5 > 2.0F) ? 1 : 0; }
- while ((++l < 32) && (k == 0));
- index = row * width + col;
- if (k != 0) {
- i1 = 255 - (255 * l / 32);
- i1 = Math.min(i1, 240);
- tr = tg = tb = i1;
- }
- else
- {
- i1 = (int)(100.0F * f5) / 2 + 1;
- int i2 = 101 * i1 & 0xFF;
- int i3 = 149 * i1 & 0xFF;
- int i4 = 199 * i1 & 0xFF;
- tr = i2;
- tg = i3;
- tb = i4;
- }
- ta = 255;
- inPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
- }
- }
- setRGB(fractalImage, 0, 0, getWidth(), getHeight(), inPixels);
- }
- }
- package com.gloomyfish.fractal;
- import java.awt.BorderLayout;
- import java.awt.Color;
- import java.awt.Dimension;
- import java.awt.Font;
- import java.awt.FontFormatException;
- import java.awt.Graphics;
- import java.awt.Graphics2D;
- import java.awt.RenderingHints;
- import java.io.IOException;
- import java.io.InputStream;
- import java.util.Date;
- import javax.swing.JComponent;
- import javax.swing.JFrame;
- public class FractalTree extends JComponent {
- /**
- *
- */
- private static final long serialVersionUID = 8812325148970066491L;
- private int maxRecursions = 8; //never make this too big or it'll take forever
- private double angle = 0.2 * Math.PI; //angle in radians
- private double shrink = 1.8; //relative size of new branches
- public FractalTree() {
- super();
- }
- protected void paintComponent(Graphics g) {
- Graphics2D g2 = (Graphics2D) g;
- g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
- g2.setPaint(Color.WHITE);
- g2.fillRect(0, 0, 400, 400);
- renderTree(g2);
- g2.setPaint(Color.RED);
- try {
- g2.setFont(loadFont());
- } catch (FontFormatException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- } catch (IOException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- g2.drawString("Created by Gloomyfish " + new Date(System.currentTimeMillis()), 10, 320);
- }
- /**
- * create fractal tree using recursion
- * @param Graphics2D g2
- */
- private void renderTree(Graphics2D g2) {
- g2.setPaint(new Color(128, 96, 64));
- recursion(400.0d / 2.0d, 400.0d -1.0d, 0.0d, -1.0d, 400.0d / 2.3d, 0, g2);
- }
- // http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche31.html
- void recursion(double posX, double posY, double dirX, double dirY, double size, int n, Graphics2D g2)
- {
- int x1, x2, y1, y2;
- x1 = (int)posX;
- y1 = (int)posY;
- x2 = (int)(posX + size * dirX);
- y2 = (int)(posY + size * dirY);
- g2.drawLine(x1, y1, x2, y2);
- if(n >= maxRecursions) return;
- double posX2, posY2, dirX2, dirY2, size2;
- int n2;
- // calculate the new start point coordinate
- posX2 = posX + size * dirX;
- posY2 = posY + size * dirY;
- size2 = size / shrink; // make different length of line.
- n2 = n + 1;
- // rotate angle and get the new directX, directY
- // http://www.jimloy.com/geometry/trigz.htm
- // sin(theta + angle) = sin(theta) * cos(angle) + cos(theta) * sin(angle)
- // cos(theta + angle) = -sin(angle) * sin(theta) + cos(theta) * cos(angle)
- dirX2 = Math.cos(angle) * dirX + Math.sin(angle) * dirY;
- dirY2 = -Math.sin(angle) * dirX + Math.cos(angle) * dirY;
- recursion(posX2, posY2, dirX2, dirY2, size2, n2, g2);
- dirX2 = Math.cos(-angle) * dirX + Math.sin(-angle) * dirY;
- dirY2 = -Math.sin(-angle) * dirX + Math.cos(-angle) * dirY;
- recursion(posX2, posY2, dirX2, dirY2, size2, n2, g2);
- }
- /**
- * http://en.wikipedia.org/wiki/Mandelbrot_set
- * http://www.urbanfonts.com/fonts/sans-serif-fonts.htm
- * @return
- * @throws FontFormatException
- * @throws IOException
- */
- public Font loadFont() throws FontFormatException, IOException{
- String fontFileName = "AMERSN.ttf";
- InputStream is = this.getClass().getResourceAsStream(fontFileName);
- Font actionJson = Font.createFont(Font.TRUETYPE_FONT, is);
- Font actionJsonBase = actionJson.deriveFont(Font.BOLD, 12);
- return actionJsonBase;
- }
- public static void main(String[] args) {
- JFrame frame = new JFrame("Fractal Tree UI - GloomyFish");
- frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
- frame.getContentPane().setLayout(new BorderLayout());
- // Display the window.
- frame.getContentPane().add(new FractalTree(), BorderLayout.CENTER);
- frame.setPreferredSize(new Dimension(450,400));
- frame.pack();
- frame.setVisible(true);
- }
- }
版权声明:本文为博主原创文章,未经博主允许不得转载。