JAVA里的CAS算法简析

Atomic 从JDK5开始, java.util.concurrent包里提供了很多面向并发编程的类. 使用这些类在多核CPU的机器上会有比较好的性能.
主要原因是这些类里面大多使用(失败-重试方式的)乐观锁而不是synchronized方式的悲观锁.

跟踪了一下AtomicInteger的incrementAndGet的实现。仅做个笔记, 方便以后再深入研究。

1. incrementAndGet的实现

    public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

首先可以看到他是通过一个无限循环(spin)直到increment成功为止.  

循环的内容是

1.取得当前值

2.计算+1后的值

3.如果当前值还有效(没有被)的话设置那个+1后的值

4.如果设置没成功(当前值已经无效了即被别的线程改过了), 再从1开始.


2. compareAndSet的实现

    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

直接调用的是UnSafe这个类的compareAndSwapInt方法

全称是sun.misc.Unsafe. 这个类是Oracle(Sun)提供的实现. 可以在别的公司的JDK里就不是这个类了


3. compareAndSwapInt的实现

    /**
     * Atomically update Java variable to <tt>x</tt> if it is currently
     * holding <tt>expected</tt>.
     * @return <tt>true</tt> if successful
     */
    public final native boolean compareAndSwapInt(Object o, long offset,
                                                  int expected,
                                                  int x);

可以看到, 不是用Java实现的, 而是通过JNI调用操作系统的原生程序.


4. compareAndSwapInt的native实现

如果你下载了OpenJDK的源代码的话在hotspot\src\share\vm\prims\目录下可以找到unsafe.cpp

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

可以看到实际上调用Atomic类的cmpxchg方法.


5. Atomic的cmpxchg
这个类的实现是跟操作系统有关, 跟CPU架构也有关, 如果是windows下x86的架构
实现在hotspot\src\os_cpu\windows_x86\vm\目录的atomic_windows_x86.inline.hpp文件里

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
  // alternative for InterlockedCompareExchange
  int mp = os::is_MP();
  __asm {
    mov edx, dest
    mov ecx, exchange_value
    mov eax, compare_value
    LOCK_IF_MP(mp)
    cmpxchg dword ptr [edx], ecx
  }
}

在这里可以看到是用嵌入的汇编实现的, 关键CPU指令是 cmpxchg

到这里没法再往下找代码了. 也就是说CAS的原子性实际上是CPU实现的. 其实在这一点上还是有排他锁的. 只是比起用synchronized, 这里的排他时间要短的多. 所以在多线程情况下性能会比较好.

代码里有个alternative for InterlockedCompareExchange

这个InterlockedCompareExchange是WINAPI里的一个函数, 做的事情和上面这段汇编是一样的

http://msdn.microsoft.com/en-us/library/windows/desktop/ms683560%28v=vs.85%29.aspx


6. 最后再贴一下x86的cmpxchg指定

Opcode CMPXCHG


CPU: I486+ 
Type of Instruction: User 

Instruction: CMPXCHG dest, src 

Description: Compares the accumulator with dest. If equal the "dest" 
is loaded with "src", otherwise the accumulator is loaded 
with "dest". 

Flags Affected: AF, CF, OF, PF, SF, ZF 

CPU mode: RM,PM,VM,SMM 
+++++++++++++++++++++++ 
Clocks: 
CMPXCHG reg, reg 6 
CMPXCHG mem, reg 7 (10 if compartion fails) 

源地址:http://www.blogjava.net/mstar/archive/2013/04/24/398351.html

posted @ 2018-02-28 22:10  码农一只  阅读(4248)  评论(0编辑  收藏  举报