「APIO2018选圆圈」

「APIO2018选圆圈」

题目描述

在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) 。我们尝试对这些圆运行这个算法:

  1. 找到这些圆中半径最大的。如果有多个半径最大的圆,选择编号最小的。记为 \(c_i\)
  2. 删除 \(c_i\) 及与其有交集的所有圆。两个圆有交集当且仅当平面上存在一个点,这个点同时在这两个圆的圆周上或圆内。
  3. 重复上面两个步骤直到所有的圆都被删除。

当 \(c_i\) 被删除时,若循环中第1步选择的圆是 \(c_j\) ,我们说 \(c_i\) 被 \(c_j\) 删除。对于每个圆,求出它是被哪一个圆删除的。

解题思路 :

越抓越痒有理想,\(n^2\) 有信仰。

首先把圆心拿出来建KD树,对于每一棵子树,维护出一个矩形框住这些圆的并,每次删除爆枚整棵树通过判断和这个矩形有没有交来剪枝,最坏复杂度 \(O(n^2)\) ,好像旋转某个角度就卡不掉了。

话说写APIO题卡评测真是爽啊,顺便写篇博客存个KD树板子。

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
    int f = 0, ch = 0; x = 0;
    for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
    for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
    if(f) x = -x;
}
const int N = 600005;
const double sina = sqrt(2)/2, cosa = sina, eps = 5e-2;

int ans[N], Sgn, rt, n;

inline double sqr(double x){ return x * x; }
inline void chkmax(double &x, double y){ if(y > x) x = y; }
inline void chkmin(double &x, double y){ if(y < x) x = y; }
struct Point{ double x, y, r; int id; } a[N], s[N];
inline bool cmp(Point A, Point B){
	if(Sgn == 0) return A.x < B.x;
	if(Sgn == 1) return A.y < B.y;
	if(Sgn == 2) return A.r == B.r ? (A.id < B.id) : (A.r > B.r);
}
struct Kdtree{
	int ch[N][2];
	struct Node{
		double mx[2], mn[2]; int id;
	}T[N];
	inline void update(int x){
		T[x].mx[0] = a[x].x + a[x].r, T[x].mx[1] = a[x].y + a[x].r;
		T[x].mn[0] = a[x].x - a[x].r, T[x].mn[1] = a[x].y - a[x].r;
		for(int i = 0; i < 2; i++) if(ch[x][i])
			for(int j = 0; j < 2; j++){
				chkmax(T[x].mx[j], T[ch[x][i]].mx[j]);
				chkmin(T[x].mn[j], T[ch[x][i]].mn[j]);
			}
	}
	inline void build(int &u, int l, int r, int sgn){
		if(l > r) return;
		int mid = l + r >> 1; u = mid, Sgn = sgn;
		nth_element(a + l, a + mid, a + r + 1, cmp);
		build(ch[u][0], l, mid - 1, sgn ^ 1);
		build(ch[u][1], mid + 1, r, sgn ^ 1), update(u);
	}
	inline void Delete(int u, Point now){
		if(!u || now.x - now.r > T[u].mx[0] || now.x + now.r < T[u].mn[0]
		|| now.y - now.r > T[u].mx[1] || now.y + now.r < T[u].mn[1]) return;
		if(!ans[a[u].id]){
			if(sqr(now.x-a[u].x)+sqr(now.y-a[u].y) <= sqr(now.r+a[u].r) + eps)
				ans[a[u].id] = now.id, a[u].x = a[u].y = 0, a[u].r = -inf;
		}
		Delete(ch[u][0], now), Delete(ch[u][1], now), update(u);
	}
}van;
int main(){
	read(n);
	for(int i = 1, x, y; i <= n; i++){
		read(x), read(y), read(a[i].r), a[i].id = i;
		a[i].x = (double) x * cosa - y * sina;
		a[i].y = (double) x * sina + y * cosa;
	}
	Sgn = 2, sort(a + 1, a + n + 1, cmp);
	for(int i = 1; i <= n; i++) s[i] = a[i];
	van.build(rt, 1, n, 0);
	for(int i = 1; i <= n; i++)
		if(!ans[s[i].id]) van.Delete(rt, s[i]);
	for(int i = 1; i <= n; i++) printf("%d ", ans[i]);
	return 0;
}
posted @ 2018-12-14 11:27  Joyemang33  阅读(532)  评论(0编辑  收藏  举报