【题解】P2999
思路:拓扑排序
对于牛奶来说,最多只有一种方式从一个接口流到另一个接口。
则不会有牛奶分开又聚到一起,故有一个性质:除非节点的入度 \(=0\),否则任何出度 \(>1\) 的节点的子节点都不能放置混合器。
然后跑拓扑排序即可。
代码
#include <iostream>
#include <cstdio>
#include <queue>
#define int long long
using namespace std;
const int MAXN = 1e5 + 5;
int n, cnt;
int head[MAXN], in[MAXN], out[MAXN], milk[MAXN];
bool ismilk[MAXN];
queue<int> q;
struct edge
{
int to, nxt;
}e[MAXN];
inline void add(int u, int v)
{
e[++cnt] = edge{v, head[u]};
head[u] = cnt;
}
inline void topo()
{
cnt = 0;
for (int i = 1; i <= n; i++)
{
if (!in[i])
{
q.push(i);
ismilk[i] = true; //挤奶器
milk[i] = 1; //有多少个挤奶器的牛奶流过这里
cnt++; //统计挤奶器的数量
}
}
while (!q.empty())
{
int u = q.front();
q.pop();
if (out[u] > 1) //出度>1不用管
{
continue;
}
for (int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
in[v]--;
milk[v] += milk[u]; //加上父节点的值
if (!in[v]) //父节点全部处理完
{
q.push(v);
}
}
}
}
signed main()
{
scanf("%lld", &n);
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%lld%lld", &u, &v);
add(u, v);
out[u]++;
in[v]++;
}
topo();
for (int i = 1; i <= n; i++)
{
if (!ismilk[i] && milk[i] == cnt) //不是挤奶器并且所有挤奶器的牛奶流过这里
{
printf("%lld\n", i);
}
}
return 0;
}