『题解』Luogu-P6271 [湖北省队互测2014]一个人的数论

P6271 [湖北省队互测2014]一个人的数论

Description

  • 给出非负整数 \(d\) 和正整数 \(n\) 的质因数分解式 \(n = \prod_{i = 1}^{\omega} p_i^{\alpha_i}\),请求出

    \[\left(f_d(n) = \sum_{i = 1}^n [\gcd(i, n) = 1]\, i^d \right) \bmod (10^9 + 7) \]

  • \(0\le d\le 100, 1\le \omega\le 10^3, 2\le p_i\le 10^9, 1\le \alpha_i \le 10^9\)

Solution

\[\begin{aligned} f_d(n) & = \sum_{i = 1}^n [\gcd(i, n) = 1] \, i^d \\ & = \sum_{i = 1}^n i^d \sum_{k\mid \gcd(i, n)} \mu(k) \\ & = \sum_{k \mid n} \mu(k) \sum_{i = 1}^n [k\mid i] \, i^d \\ & = \sum_{k \mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k}} i^d \end{aligned} \]

后面的等幂和直接用伯努利数做就可以了。

我们知道

\[\begin{aligned} S_m(n) & = \sum_{k = 0}^{n - 1} k^m \\ & = \dfrac{1}{m + 1} \sum_{k = 0}^m \dbinom{m + 1}{k} B_k n^{m + 1 - k} \end{aligned} \]

设出系数

\[f_i = \dfrac{1}{d + 1} \dbinom{d + 1}{i} B_i \]

系数可以 \(\Omicron(d^2)\) 预处理。

\[\begin{aligned} f_d(n) & = \sum_{k\mid n} \mu(k) k^d S_d\left(\dfrac{n}{k} + 1 \right) \\ & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 0}^d f_i \left(\dfrac{n}{k} + 1 \right)^{d + 1 - i} \end{aligned} \]

你发现这个 \(\left(\dfrac{n}{k} + 1 \right)^{m + 1 - i}\) 没法处理,但如果是 \(\left(\dfrac{n}{k}\right)^{m + 1 - i}\) 就很好了——它可以和前面的 \(k^d\) 相乘。

退回到上一步

\[\begin{aligned} f_d(n) & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k}} i^d \\ & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k} - 1} i^d + \sum_{k\mid n} \mu(k) k^d \left(\dfrac{n}{k}\right)^d \\ & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k} - 1} i^d + n^d \sum_{k\mid n} \mu(k) \\ & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k} - 1} i^d + n^d [n = 1] \\ \end{aligned} \]

观察数据范围

\(1\le \omega\le 10^3, 2\le p_i\le 10^9, 1\le \alpha_i \le 10^9\)

说明 \(n\ne 1\)

\[\begin{aligned} f_d(n) & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 1}^{\frac{n}{k} - 1} i^d \\ & = \sum_{k \mid n} \mu(k) k^d S_d\left(\dfrac{n}{k} \right) \\ & = \sum_{k\mid n} \mu(k) k^d \sum_{i = 0}^d f_i \left(\dfrac{n}{k}\right)^{d + 1 - i} \\ & = \sum_{k\mid n} \mu(k) \sum_{i = 0}^d f_i n^{d + 1 - i} k^{i - 1} \\ & = \sum_{i = 0}^d f_i n^{d + 1 - i} \sum_{k\mid n} \mu(k) k^{i - 1} \end{aligned} \]

你会发现

\[\sum_{k\mid n} \mu(k) k^{i - 1} = [(\mu\cdot \operatorname{Id}_{i - 1}) * \mathbf{1}](n) \]

所以这是一个积性函数,但是也不可能线性筛啊。

我们设

\[\sum_{k\mid n} \mu(k) k^{i - 1} = g_i(n) \]

因为 \(g_i(n)\) 是积性函数,所以可以按质因数拆开:

\[g_i(n) = \prod_{k = 1}^{\omega} g_i(p_k^{\alpha_k}) \]

则只用考虑质因数幂的情况。

你会发现

\[g_i(p^{\alpha}) = \sum_{k\mid p^{\alpha}} \mu(k) k^{i - 1} \]

其中只有 \(k = 1\)\(k = p\)\(\mu(k)\) 才有贡献。

\[\begin{cases} \mu(1) 1^{i - 1} = 1 \\ \mu(p) p^{i - 1} = - p^{i - 1} \end{cases} \]

所以

\[g_i(p^{\alpha}) = 1 - p^{i - 1} \]

再贴一遍式子

\[f_d(n) = \sum_{i = 0}^d f_i n^{d + 1 - i} \sum_{k\mid n} \mu(k) k^{i - 1} \]

计算

\[g_i(n) = \prod_{k = 1}^{\omega} 1 - p_k^{i - 1} \]

\(\Omicron(\omega \log i)\) 的,求个和就是 \(\Omicron(\omega d \log d)\),但其实可以把 \(p^{i - 1}\) 往上递推做到 \(\Omicron(d\omega)\)

预处理伯努利数 \(f_i\)\(\Omicron(d^2)\) 的,而 \(n^{d + 1 - i}\)\(\Omicron(d\log d)\) 的,远不及前面的 \(\Omicron(d\omega)\)

综上,时间复杂度为 \(\Omicron(d^2 + d\omega)\)

Code

注意预处理要处理到 \(d + 1\)

//18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#define Debug(x) cout << #x << "=" << x << endl
typedef long long ll;
using namespace std;

const int MOD = 1e9 + 7;
const int MAXD = 105;

int add(int a, int b) {return (a + b) % MOD;}
int sub(int a, int b) {return (a - b + MOD) % MOD;}
int mul(int a, int b) {return (ll)a * b % MOD;}
int qpow(int a, int b) {int base = a, ans = 1; while (b) {if (b & 1) ans = mul(ans, base); base = mul(base, base); b >>= 1;} return ans;}
int GetInv(int a) {return qpow(a, MOD - 2);}

struct Bernoulli
{
	int fac[MAXD], fac_inv[MAXD], inv[MAXD];
	
	void pre(int d)
	{
		fac[0] = fac_inv[0] = inv[1] = 1;
		for (int i = 1; i <= d; i++)
		{
			fac[i] = mul(fac[i - 1], i);
		}
		fac_inv[d] = GetInv(fac[d]);
		for (int i = d - 1; i >= 1; i--)
		{
			fac_inv[i] = mul(fac_inv[i + 1], i + 1);
			inv[i + 1] = mul(fac_inv[i + 1], fac[i]);
		}
	}
	
	int C(int n, int m)
	{
		return mul(mul(fac[n], fac_inv[n - m]), fac_inv[m]);
	}
	
	int B[MAXD], f[MAXD];
	
	void cal(int d)
	{
		B[0] = 1;
		f[0] = inv[d + 1];
		for (int m = 1; m <= d; m++)
		{
			int sum = 0;
			for (int k = 0; k < m; k++)
			{
				sum = add(sum, mul(C(m + 1, k), B[k]));
			}
			B[m] = mul(MOD - sum, inv[m + 1]);
			f[m] = mul(mul(inv[d + 1], C(d + 1, m)), B[m]);
		}
	}
}Ber;

const int MAXW = 1005;

int p[MAXW], a[MAXW], xsy[MAXW];

int main()
{
	int d, w;
	scanf("%d%d", &d, &w);
	Ber.pre(d + 1), Ber.cal(d);
	int n = 1;
	for (int i = 1; i <= w; i++)
	{
		scanf("%d%d", p + i, a + i);
		n = mul(n, qpow(p[i], a[i]));
		xsy[i] = GetInv(p[i]);
	}
	int ans = 0;
	for (int i = 0; i <= d; i++)
	{
		int pro = 1;
		for (int j = 1; j <= w; j++)
		{
			pro = mul(pro, sub(1, xsy[j]));
			xsy[j] = mul(xsy[j], p[j]);
		}
		ans = add(ans, mul(mul(Ber.f[i], qpow(n, d + 1 - i)), pro));
	}
	printf("%d\n", ans);
	return 0;
}
posted @ 2022-01-31 21:16  mango09  阅读(38)  评论(0编辑  收藏  举报
-->