【题解】Luogu-P6156 简单题

P6156 简单题P6222 「P6156 简单题」加强版

加强版卡空间。

Description

  • 给定整数 \(n, k\),请求出

    \[\left[\sum_{i = 1}^n \sum_{j = 1}^n (i + j)^k f(\gcd(i, j)) \gcd(i, j) \right] \bmod 998244353 \]

    \[f(n) = \begin{cases} 0 & \exists d > 1, d^2\mid n \\ 1 & \text{othervise} \end{cases} \]

  • \(1\le n\le 5\times 10^6, 1\le k\le 10^{18}\)

Solution

一个重要的性质:\(f(n) = \mu^2(n)\)

\[\begin{aligned} ans & = \sum_{i = 1}^n \sum_{j = 1}^n (i + j)^k \mu^2(\gcd(i, j)) \gcd(i, j) \\ & = \sum_{d = 1}^n \sum_{i = 1}^n \sum_{j = 1}^n (i +j)^k \mu^2(d) d [\gcd(i, j) = d] \\ & = \sum_{d = 1}^n \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} (id + jd)^k \mu^2(d) d [\gcd(i, j) = 1] \\ & = \sum_{d = 1}^n d^{k + 1} \mu^2(d) \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} (i + j)^k [\gcd(i, j) = 1] \end{aligned} \]

把后面那一项拎出来看

\[\begin{aligned} \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} (i + j)^k [\gcd(i, j) = 1] & = \sum_{p = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(p) \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} [p\mid i] \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} [p\mid j] (i + j)^k \\ & = \sum_{p = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(p) \sum_{i = 1}^{\left\lfloor\frac{n}{dp}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{dp}\right\rfloor} (ip + jp)^k \\ & = \sum_{p = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(p) p^k \sum_{i = 1}^{\left\lfloor\frac{n}{dp}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{dp}\right\rfloor} (i + j)^k \end{aligned} \]

\[f(n) = \sum_{i = 1}^n \sum_{j = 1}^n (i + j)^k \]

\[\begin{aligned} ans & = \sum_{d = 1}^n d^{k +1} \mu^2(d) \sum_{p = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(p) p^k f\left(\left\lfloor\dfrac{n}{dp}\right\rfloor \right) \\ & = \sum_{T = 1}^n f\left(\left\lfloor\dfrac{n}{T}\right\rfloor \right) \sum_{d\mid T} d^{k + 1} \mu^2(d) \left(\dfrac{T}{d}\right)^k \mu\left(\dfrac{T}{d}\right) \\ & = \sum_{T = 1}^n f\left(\left\lfloor\dfrac{n}{T}\right\rfloor \right) T^k \sum_{d\mid T} d\, \mu^2(d) \mu\left(\dfrac{T}{d}\right) \end{aligned} \]

整除分块即可。

观察到题目中

时间调至 \(1s\),卡掉了 \(\Omicron(n\log k), \Omicron(n\log p)\) 的做法。

乱杀 /fad

于是预处理要做到 \(\Omicron(n)\)

首先是 \(n^k\),其实就是 \(\operatorname{Id}_k(n)\),这是一个完全积性函数,可以线性筛;对于质数暴力计算是 \(\Omicron(\log p\cdot \pi(n)) \simeq \Omicron(n)\),是线性的;我们顺便求出它的前缀和,记作 \(g(n) = \sum_{i = 1}^n i^k\)

然后是 \(f(n)\),令 \(h(n) = \sum_{i = 1}^n g(i)\)

结论:

\[f(n) = h(2n) - 2h(n) \]

证明:

数学归纳法。

\(f(1) = \sum_{i = 1}^n\sum_{j = 1}^n (i + j)^k = 1\)

\(f(n) = h(2n) + 2h(n)\) 成立时,有

\[\begin{aligned} f(n + 1) & = \sum_{i = 1}^n \sum_{j = 1}^n (i + j)^k \\ & = f(n) + 2 \sum_{i = 1}^n (i + n + 1)^k + (2n + 2)^k \\ & = f(n) + 2 \sum_{i = n + 2}^{2n +1} i^k + \sum_{i = 2n + 2}^{2n + 2} i^k \\ & = h(2n) - 2h(n) + 2[g(2n +1) - g(n + 1)] + [g(2n + 2) - g(2n + 1)] \\ & = \sum_{i = 1}^{2n} g(i) - 2 \sum_{i = 1}^n g(i) + 2 g(2n + 1) - 2 g(n + 1) + g(2n + 2) - g(2n + 1) \\ & = \left(\sum_{i = 1}^{2n} g(i) + g(2n + 1) + g(2n + 2) \right) - 2 \left(\sum_{i = 1}^n g(i) + g(n + 1) \right) \\ & = h(2n + 2) - 2h(n + 1) \end{aligned} \]

证毕。

所以 \(f(n)\) 可以 \(\Theta(1)\) 求。

最后是

\[\begin{aligned} \alpha(n) & = \sum_{d\mid n} d\, \mu^2(d) \mu\left(\dfrac{n}{d}\right) \\ & = [(\operatorname{Id} \cdot \mu^2) * \mu](n) \end{aligned} \]

所以这玩意也是个积性函数,考虑线性筛。

  • \(i\in \mathbb{P}\)\(\alpha(i) = 1\cdot \mu^2(1) \cdot \mu(i) + i\cdot \mu^2(i) \cdot \mu(1) = i- 1\)

  • \(p_j\nmid i\)\(\alpha(i\cdot p_j) = \alpha(i) \cdot \alpha(p_j)\)

  • \(p_j\mid i\):设 \(i\)\(k\) 个质因数 \(p_j\),有 \(\alpha(i\cdot p_j) = \alpha\left(\dfrac{i}{p_j^k} \cdot (p_j\cdot p_j^k) \right) = \alpha\left(\dfrac{i}{p_j^k} \right) \cdot \alpha(p_j^{k +1})\)

    ​ 现在考虑 \(\alpha(p^k)(k\ge 2)\) 的取值:

    • \(k = 2\),则 \(\alpha(p^2) = 1\cdot \mu^2(1) \cdot \mu(p^2) + p\cdot \mu^2(p) \cdot \mu(p) + p^2\cdot \mu^2(p^2) \cdot \mu(1) = -p\)
    • \(k\ge 3\),则根据抽屉原理,\(d\)\(\dfrac{n}{d}\) 中必有一个含有至少 \(2\) 个质因数 \(p\)\(\mu\) 值为 \(0\),此时 \(\alpha(p^k) = 0\)

Code

// 18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#define Debug(x) cout << #x << "=" << x << endl;
typedef long long ll;
using namespace std;

const int MAXN = 1e7 + 5;
const int MOD = 998244353;

int qpow(int a, int b)
{
	int base = a, ans = 1;
	while (b)
	{
		if (b & 1)
		{
			ans = (ll)ans * base % MOD;
		}
		base = (ll)base * base % MOD;
		b >>= 1;
	}
	return ans;
}

int p[MAXN], id[MAXN], alpha[MAXN], sum[MAXN];
bool vis[MAXN];

int g[MAXN], h[MAXN];

void pre(int n, int k)
{
	id[1] = alpha[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			id[i] = qpow(i, k);
			alpha[i] = i - 1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			id[i * p[j]] = (ll)id[i] * id[p[j]] % MOD;
			if (i % p[j] == 0)
			{
				int k = i / p[j];
				if (k % p[j] == 0)
				{
					alpha[i * p[j]] = 0;
				}
				else
				{
					alpha[i * p[j]] = (ll)alpha[k] * (MOD - p[j]) % MOD;
				}
				break;
			}
			alpha[i * p[j]] = (ll)alpha[i] * alpha[p[j]] % MOD;
		}
	}
	
	for (int i = 1; i <= n; i++)
	{
		sum[i] = (sum[i - 1] + (ll)id[i] * alpha[i] % MOD) % MOD;
		g[i] = (g[i - 1] + id[i]) % MOD;
		h[i] = (h[i - 1] + g[i]) % MOD;
	}
}

int f(int n)
{
	return (h[2 * n] - (ll)2 * h[n] % MOD + MOD) % MOD;
}

int GetSum(int l, int r)
{
	return (sum[r] - sum[l - 1] + MOD) % MOD;
}

int block(int n)
{
	int res = 0;
	for (int l = 1, r; l <= n; l = r + 1)
	{
		int k = n / l;
		r = n / k;
		res = (res + (ll)f(k) * GetSum(l, r) % MOD) % MOD;
	}
	return res;
}

int main()
{
	int n;
	ll k;
	scanf("%d%lld", &n, &k);
	pre(n * 2, k % (MOD - 1));
	printf("%d\n", block(n));
	return 0;
}
posted @ 2022-01-24 12:02  mango09  阅读(39)  评论(0编辑  收藏  举报
-->