『题解』Luogu-P5572 [CmdOI2019]简单的数论题

P5572 [CmdOI2019]简单的数论题

思路基本同 P4240 毒瘤之神的考验

Description

  • 多测,\(T\) 组数据。

  • 给定整数 \(n, m\),请求出

    \[\left[\sum_{i = 1}^n \sum_{j = 1}^m \varphi\left(\dfrac{\operatorname{lcm}(i, j)}{\gcd(i, j)} \right) \right] \bmod 23333 \]

  • \(T\le 3\times 10^4, m\le n\le 5\times 10^4\)

Solution

不妨设 \(n\le m\)

\[\begin{aligned} ans & = \sum_{d = 1}^n \sum_{i = 1}^n \sum_{j = 1}^m \varphi\left(\dfrac{ij}{d^2} \right) [\gcd(i, j) = d] \\ & = \sum_{d = 1}^n \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor} \varphi(ij) [\gcd(i, j) = 1] \\ & = \sum_{d = 1}^n \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \varphi(i) \sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor} \varphi(j) [\gcd(i, j) = 1] \\ & = \sum_{d = 1}^n \sum_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) \sum_{i = 1}^{\left\lfloor\frac{n}{dk}\right\rfloor} \varphi(ik) \sum_{j = 1}^{\left\lfloor\frac{m}{dk}\right\rfloor} \varphi(jk) \\ & = \sum_{T = 1}^n \sum_{k\mid T} \mu(k) \sum_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} \varphi(ik) \sum_{j = 1}^{\left\lfloor\frac{m}{T}\right\rfloor} \varphi(jk) \end{aligned} \]

套路地设出来

\[f(k, n) = \sum_{i = 1}^n \varphi(ik) \]

那么

\[ans = \sum_{T = 1}^n \sum_{k\mid T} \mu(k) f\left(k, \left\lfloor\dfrac{n}{T}\right\rfloor \right) f\left(k, \left\lfloor\dfrac{m}{T}\right\rfloor \right) \]

又有递推式

\[f(k, n) = f(k, n - 1) + \varphi(nk) \]

\(f\) 可以在 \(\Theta(n\ln n)\) 时间内预处理。

但是这个 \(f\) 带一个 \(k\),无法整除分块,只能暴力,所以查询是 \(\Omicron(T\sum\limits_{i = 1}^n \dfrac{n}{i}) \simeq \Omicron(T n\ln n)\) 的。


我们想要整除分块,那就弄个前缀和。

把整个表示出来

\[g(n, m, l) = \sum_{i = 1}^l \sum_{k\mid i} \mu(k) f(k, n) f(k, m) \]

那么整除分块大概长这样

\[g\left(\left\lfloor\dfrac{n}{l}\right\rfloor, \left\lfloor\dfrac{m}{l}\right\rfloor, r \right) - g\left(\left\lfloor\dfrac{n}{l}\right\rfloor, \left\lfloor\dfrac{m}{l}\right\rfloor, l - 1 \right) \]

同样有递推式

\[g(n, m, l) = g(n, m, l - 1) + \sum_{k\mid l} \mu(k) f(k, n) f(k, m) \]

预处理是

\[\Omicron\left(n \sum_{i = 1}^n \left(\sum_{j = 1}^{\frac{n}{i}} \dfrac{n}{j}\right) + \dfrac{n}{i} \right) \simeq \Omicron(n^3) \]

\(\rm TLE + MLE\)

但是它能够做到十分优秀的 \(\Omicron(T \sqrt{n})\) 回答。


如果要将两种方法结合,那么就是大家喜闻乐见的 根号分治 了。

(其实题目背景已经有提示了)

A:“数论,分块。”

\(k\) 为阈值,表示预处理 \(g(n, m, l)\)\(n, m\) 只处理到 \(k\)

那么计算时对于 \(l \le \left\lfloor\dfrac{n}{k}\right\rfloor\) 的直接暴力;对于 \(l > \left\lfloor\dfrac{n}{k}\right\rfloor\) 的部分,有 \(\left\lfloor\dfrac{n}{l}\right\rfloor \le k\),直接用预处理过的 \(g\)

Code

//18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#include <vector> 
#define Debug(x) cout << #x << "=" << x << endl
typedef long long ll;
using namespace std;

const int MAXN = 5e4 + 5;
const int N = 5e4;
const int MAXK = 155;
const int K = 150;
const int MOD = 23333;
typedef int arr[MAXN];
int add(int a, int b) {return (a + b) % MOD;}
int sub(int a, int b) {return (a - b + MOD) % MOD;}
int mul(int a, int b) {return (ll)a * b % MOD;}

arr p, mu, phi;
bool vis[MAXN];
vector<int> f[MAXN], g[MAXK][MAXK];

void pre()
{
	mu[1] = phi[1] = 1;
	for (int i = 2; i <= N; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			mu[i] = MOD - 1;
			phi[i] = (i - 1) % MOD;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= N; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				mu[i * p[j]] = 0;
				phi[i * p[j]] = mul(phi[i], p[j]);
				break;
			}
			mu[i * p[j]] = mul(mu[i], mu[p[j]]);
			phi[i * p[j]] = mul(phi[i], phi[p[j]]);
		}
	}
	
	for (int k = 1; k <= N; k++)
	{
		f[k].resize(N / k + 5);
		for (int n = 1; n <= N / k; n++)
		{
			f[k][n] = add(f[k][n - 1], phi[n * k]);
		}
	}
	
	for (int n = 1; n <= K; n++)
	{
		for (int m = n; m <= K; m++)
		{
			g[n][m].resize(N / m + 5);
			for (int i = 1; i <= N / m; i++)
			{
				int wjy = mul(mu[i], mul(f[i][n], f[i][m]));
				for (int j = 1; j <= N / m / i; j++)
				{
					g[n][m][i * j] = add(g[n][m][i * j], wjy);
				}
			}
			for (int l = 1; l <= N / m; l++)
			{
				g[n][m][l] = add(g[n][m][l], g[n][m][l - 1]);
			}
		}
	}
}

int block(int n, int m)
{
	if (n > m)
	{
		swap(n, m);
	}
	int res = 0, xsy = m / K;
	for (int i = 1; i <= xsy; i++)
	{
		for (int j = 1; j <= xsy / i; j++)
		{
			int t = i * j;
			res = add(res, mul(mu[i], mul(f[i][n / t], f[i][m / t])));
		}
	}
	for (int l = xsy + 1, r; l <= n; l = r + 1)
	{
		int k1 = n / l, k2 = m / l;
		r = min(n / k1, m / k2);
		res = add(res, sub(g[k1][k2][r], g[k1][k2][l - 1]));
	}
	return res;
}

int main()
{
	pre();
	int t;
	scanf("%d", &t);
	while (t--)
	{
		int n, m;
		scanf("%d%d", &n, &m);
		printf("%d\n", block(n, m));
	}
	return 0;
}
posted @ 2022-01-26 21:02  mango09  阅读(59)  评论(0编辑  收藏  举报
-->