【数学】狄利克雷卷积

一、前置知识

  • 积性函数

二、定义

狄利克雷卷积(\(\rm{Dirichlet\ product}\),定义为在 数论函数 之间的一种二元运算,它是今后诸多算法如 莫比乌斯反演、杜教筛 的基础。

地雷卷积和懵逼繁衍

具体地:

\[(f * g)(n) = \sum\limits_{xy=n} f(x) g(y) \]

\[(f * g)(n) = \sum\limits_{d \mid n} f(d)g\left(\dfrac{n}{d}\right) \]

三、性质

1. 积性函数

\(f,g\) 是积性函数,则 \(f * g\) 也是积性函数。

首先 \((f * g)(1) = f(1) g(1) = 1\)

\(n\perp m\) 时:

\[\begin{aligned} (f * g)(n) \cdot (f * g)(m) & = \sum_{d_1\mid n} f(d_1) g\left(\dfrac{n}{d_1}\right) \cdot \sum_{d_2\mid m} f(d_2) g\left(\dfrac{m}{d_2}\right) \\ & = \sum_{d_1\mid n, d_2\mid m} f(d_1) g\left(\dfrac{n}{d_1}\right) f(d_2) g\left(\dfrac{m}{d_2}\right) \end{aligned} \]

因为 \(n\perp m\),所以 \(\forall d_1\mid n, d_2\mid m\)\(d_1 \perp d_2\),那么 \(f(d_1)f(d_2)=f(d_1 d_2),g(d_1) g(d_2) = g(d_1 d_2)\)

所以

\[\sum_{d_1\mid n, d_2\mid m} f(d_1) g\left(\dfrac{n}{d_1}\right) f(d_2) g\left(\dfrac{m}{d_2}\right) = \sum_{d_1\mid n, d_2\mid m} f(d_1 d_2) g\left(\dfrac{nm}{d_1 d_2}\right) \]

因为 \(n\perp m\),所以 \(nm\) 的因数都可以惟一地表示成 \(n\) 的某个因数与 \(m\) 的某个因数的乘积。

\[\begin{aligned} \sum_{d_1\mid n, d_2\mid m} f(d_1 d_2) g\left(\dfrac{nm}{d_1 d_2}\right) & = \sum_{d\mid nm} f(d) g\left(\dfrac{nm}{d}\right) \\ & = (f * g)(nm) \end{aligned} \]

综上有

\[(f * g)(n) \cdot (f * g)(m) = (f * g)(nm) \]

\(f * g\) 也是积性函数。

\(g, f * g\) 是积性函数,则 \(f\) 也是积性函数。

反证法,假设 \(f\) 不是积性函数,那么一定存在一组 \(n,m\),使得 \(f(n) f(m) \ne f(nm)\),于是我们在其中选出一组 \(n,m\) 使得 \(nm\) 最小。

  • \(nm = 1\),则 \(n = m = 1\),有 \(f(1) f(1) \ne f(1)\),所以 \(f(1) \ne 1\)。又 \(g\) 为积性函数,则 \(g(1) = 1\),此时 \((f * g)(1) = f(1) g(1) \ne 1\),与 \(f * g\) 是积性函数矛盾。

  • \(nm > 1\),则由 \(nm\) 最小可得对于 \(\forall a, b, \gcd(a, b) = 1, ab < nm\)\(f(a) f(b) = f(ab)\)

    \[\begin{aligned} (f * g)(nm) & = \sum_{ab\mid nm} f(ab) g\left(\dfrac{nm}{ab}\right) \\ & = \sum_{a\mid n, b\mid m} f(ab) g\left(\dfrac{nm}{ab}\right) \\ & = \sum_{a\mid n, b\mid m, ab < nm} f(ab) g\left(\dfrac{nm}{ab}\right) + f(nm) g(1) \\ & = \sum_{a\mid n, b\mid m, ab < nm} f(a) g\left(\dfrac{n}{a}\right) f(b) g\left(\dfrac{m}{b}\right) + f(nm) \\ & = \left(\sum_{a\mid n} f(a) g\left(\dfrac{n}{a}\right) \sum_{b\mid m} f(n) g\left(\dfrac{m}{b}\right) - f(n)f(m)\right) + f(nm) \\ & = (f * g)(n) (f * g)(m) - f(n) f(m) + f(nm) \end{aligned} \]

    因为 \(f(n) f(m) \ne f(nm)\),所以 \((f * g)(nm) \ne (f * g)(n) (f * g)(m)\),与 \(f * g\) 是积性函数矛盾。

综上,\(f\) 一定是积性函数。

2. 交换律

\[\begin{aligned} (f * g)(n) & = \sum_{xy = n} f(x) g(y) \\ & = \sum_{yx = n} g(y) f(x) \\ & = (g * f)(n) \end{aligned} \]

3. 结合律

\[\begin{aligned} ((f * g) * h)(n) & = \sum_{xy = n} (f * g)(x) \cdot h(y) \\ & = \sum_{xy = n} \left(\sum_{ab = x} f(a) g(b)\right) \cdot h(y) \\ & = \sum_{aby = n} f(a) g(b) h(y) \\ & = \sum_{ax = n} f(a) \cdot \left(\sum_{by=x} g(b) h(y)\right) \\ & = \sum_{ax = n} f(a) \cdot (g * h)(x) \\ & = (f * (g * h))(n) \end{aligned} \]

4. 分配律

\[\begin{aligned} (f * (g + h))(n) & = \sum_{xy = n} f(x) \cdot (g + h)(y) \\ & = \sum_{xy = n} (f(x) g(y) + f(x) h(y)) \\ & = \sum_{xy = n} f(x) g(y) + \sum_{xy = n} f(x) h(y) \\ & = (f * g)(n) + (f * h)(n) \end{aligned} \]

5. 单位元

\[\begin{aligned} (\varepsilon * f)(n) & = \sum_{xy = n} \varepsilon(x) f(y) \\ & = \sum_{xy = n} [x = 1] f(y) \\ & = f(n) \end{aligned} \]

所以 \(\varepsilon\) 是狄利克雷卷积的单位元。

6. 逆

\(f * g = \varepsilon\),则称 \(g\)\(f\)狄利克雷逆(\(\rm{Dirichlet\ inverse}\),记作 \(f^{-1}\)

首先有

\[\begin{aligned} (f * f^{-1})(1) & = \sum_{d\mid 1} f(d) f^{-1}\left(\dfrac{1}{d}\right) \\ & = f(1) f^{-1}(1) \end{aligned} \]

\[\because (f * f^{-1})(1) = \varepsilon(1) \\ \therefore f(1) f^{-1}(1) = \varepsilon(1) = 1 \\ \therefore f^{-1}(1) = \dfrac{1}{f(1)} \]

这说明了 \(f^{-1}\) 存在的 必要条件\(f(1) \ne 0\)

\(n > 1\) 时:

\[\begin{aligned} (f * f^{-1})(n) & = \sum_{d\mid n} f(d) f^{-1}\left(\dfrac{n}{d}\right) \\ & = f(1) f^{-1}(n) + \sum_{d\mid n, d > 1} f(d) f^{-1}\left(\dfrac{n}{d}\right) \\ \end{aligned} \]

\[\because (f * f^{-1})(n) = \varepsilon(n) = 0 \\ \therefore f(1) f^{-1}(n) + \sum_{d\mid n, d > 1} f(d) f^{-1}\left(\dfrac{n}{d}\right) = 0 \\ \therefore f^{-1}(n) = -\dfrac{1}{f(1)} \sum_{d\mid n, d > 1} f(d) f^{-1}\left(\dfrac{n}{d}\right) \]

综上,

\[f^{-1}(n) = \begin{cases} \dfrac{1}{f(1)} & n = 1 \\ -\dfrac{1}{f(1)} \sum\limits_{d\mid n, d > 1} f(d) f^{-1}\left(\dfrac{n}{d}\right) & n > 1 \end{cases} \]

这样就可以 递归 计算了。


显然,积性函数必然存在逆,因为 \(f(1) = 1 \ne 0\)

接下来证明积性函数的逆仍然为积性函数。

由性质 \(1\) 知当 \(g,f * g\) 是积性函数时,\(f\) 也是积性函数。

又有 \(f * f^{-1} = \varepsilon\),其中 \(f,\varepsilon\) 均为积性函数,则 \(f^{-1}\) 也为积性函数。

四、数论函数间的关系

首先有

\[\begin{aligned} (f * \mathbf{1})(n) & = \sum_{d\mid n} f(d) \mathbf{1}\left(\dfrac{n}{d}\right) \\ & = \sum_{d\mid n} f(d) \end{aligned} \]

后面要用。

1. 幂函数与除数函数

\[\begin{aligned} (\operatorname{Id}_k *\, \mathbf{1})(n) & = \sum_{d\mid n} \operatorname{Id}_k(n) \\ & = \sum_{d\mid n} n ^ k \\ & = \sigma_k(n) \end{aligned} \]

\(\operatorname{Id}_k *\, \mathbf{1} = \sigma_k\)

2. 欧拉函数与恒等函数

我们曾经证明过 \(\sum\limits_{d\mid n} \varphi(d) = n = \operatorname{Id}(n)\)

\(\sum\limits_{d\mid n} \varphi(d) = (\varphi * \mathbf{1})(n)\)

所以 \(\varphi * \mathbf{1} = \operatorname{Id}\)

3. 莫比乌斯函数与单位函数

\(n = \prod\limits_{i = 1}^k p_i^{\alpha_i}, n' = \prod\limits_{i = 1}^k p_i\)

\[\begin{aligned} (\mu * \mathbf{1})(n) & = \sum_{d\mid n} \mu(d) \\ & = \sum_{d\mid n'} \mu(d) \\ & = \sum_{i = 0}^k \dbinom{k}{i} (-1)^i \\ & = \sum_{i = 0}^k \dbinom{k}{i} 1^{k - i} \cdot (-1)^i \\ & = [1 + (-1)]^k \end{aligned} \]

又有

\[[1 + (-1)]^k = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases} \]

所以

\[\begin{aligned} (\mu * \mathbf{1})(n) & = [1 + (-1)]^k \\ & = [k = 0] \\ & = [n = 1] \\ & = \varepsilon(n) \end{aligned} \]

综上 \(\mu * \mathbf{1} = \varepsilon\)

所以 \(\mu\)\(\mathbf{1}\) 的狄利克雷逆。

4. 莫比乌斯函数与欧拉函数

\([2]\)\(\varphi * \mathbf{1} = \operatorname{Id}\),由 \([3]\)\(\mu * \mathbf{1} = \varepsilon\)

所以

\[\operatorname{Id} = \varphi * \mathbf{1} \\ \mu * \operatorname{Id} = \varphi * (\mathbf{1} * \mu) \\ \mu * \operatorname{Id} = \varphi * \varepsilon \\ \mu * \operatorname{Id} = \varphi \]

那么 \(\mu * \operatorname{Id} = \varphi\)

(反演常用)

5. 莫比乌斯函数与因数个数函数

\[\begin{aligned} (\mathbf{1} * \mathbf{1})(n) & = \sum_{d\mid n} \mathbf{1}(n) \mathbf{1}(n) \\ & = \sum_{d\mid n} 1 \\ & = d(n) \end{aligned} \]

\[\therefore d = \mathbf{1} * \mathbf{1} \\ \because \mu = \mathbf{1}^{-1} \\ \therefore \mu * d = \mathbf{1} \]

五、参考资料

posted @ 2021-12-30 21:46  mango09  阅读(512)  评论(0编辑  收藏  举报
-->