O(m²) 实现等幂求和——伯努利数

等幂求和

伯努利数是以雅各布 \(\cdot\) 伯努利的名字命名的,我们记

\[S_m(n) = \sum_{k = 0}^{n - 1} k^m \]

伯努利 暴力 算出了前几项,并进行了观察:

\[\begin{array}{ll} S_0(n) = n \\ S_1(n) = \dfrac{1}{2} n^2 - \dfrac{1}{2} n \\ S_2(n) = \dfrac{1}{3} n^3 - \dfrac{1}{2} n^2 + \dfrac{1}{6} n \\ S_3(n) = \dfrac{1}{4} n^4 - \dfrac{1}{2} n^3 + \dfrac{1}{4} n^2 + 0 n \\ S_4(n) = \dfrac{1}{5} n^5 - \dfrac{1}{2} n^4 + \dfrac{1}{3} n^3 + 0 n^2 - \dfrac{1}{30} n \\ S_5(n) = \dfrac{1}{6} n^6 - \dfrac{1}{2} n^5 + \dfrac{5}{12} n^4 + 0 n^3 - \dfrac{1}{12} n^2 + 0n \\ S_6(n) = \dfrac{1}{7} n^7 - \dfrac{1}{2} n^6 + \dfrac{1}{2} n^5 + 0 n^4 - \dfrac{1}{6} n^3 + 0 n^2 + \dfrac{1}{42} n \end{array} \]

我们发现,在 \(S_m(n)\) 中,\(n^{m + 1}\) 的系数总是 \(\dfrac{1}{m +1}\)\(n^m\) 的系数是 \(-\dfrac{1}{2}\)\(n^{m - 1}\) 的系数是 \(\dfrac{m}{12}\)\(n^{m - 2}\) 的系数是 \(0\)\(n^{m - 3}\) 的系数是 \(- \dfrac{m (m - 1) (m - 2)}{720}\)\(n^{m - 4}\) 的系数是 \(0\cdots\cdots\)\(n^{m - k}\) 的系数总是某个常数乘上 \(m^{\underline{k}} = \dfrac{m!}{(m - k)!}\)

递推公式

根据伯努利的发现,我们有

\[S_m(n) = \dfrac{1}{m + 1} \sum_{k = 0}^m \dbinom{m + 1}{k} B_k n^{m + 1 - k} \]

其中 \(B_n\) 为伯努利数,其由一个递归关系定义:

\[\sum_{k = 0}^m \dbinom{m + 1}{k} B_k = [m = 0] \]

便于计算的表示:

\[B_0 = 1 \\ B_m = \frac{-\sum\limits_{k = 0}^{m - 1} \dbinom{m + 1}{k} B_k}{m + 1}, m > 0 \]

根据手算,不难得出前几个值:

\(n\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(B_n\) \(1\) \(-\dfrac{1}{2}\) \(\dfrac{1}{6}\) \(0\) \(-\dfrac{1}{30}\) \(0\) \(\dfrac{1}{42}\) \(0\) \(-\dfrac{1}{30}\) \(0\) \(\dfrac{5}{66}\) \(0\) \(-\dfrac{691}{2730}\)

证明:

首先令

\[\hat{S}_m(n) = \dfrac{1}{m + 1} \sum_{k = 0}^m \dbinom{m + 1}{k} B_k n^{m + 1 - k} \]

那么现在我们就是要证明 \(S_m(n) = \hat{S}_m(n)\),考虑使用数学归纳法。

首先

\[\begin{array}{ll} S_0(n) = \sum\limits_{i = 0}^{n - 1} i^0 = n \\ \hat{S}_0(n) = \dfrac{1}{1} \dbinom{1}{0} B_0 n^{1} = n \end{array} \]

\[\begin{aligned} S_{m + 1}(n) + n^{m + 1} & = \sum_{k = 0}^n k^{m + 1} \\ & = \sum_{k = 0}^{n - 1} (k + 1)^{m + 1} \\ & = \sum_{k = 0}^{n - 1} \sum_{j = 0}^{m + 1} \dbinom{m + 1}{j} k^j \\ & = \sum_{j = 0}^{m + 1} \dbinom{m + 1}{j} \sum_{k = 0}^{n - 1} k^j \\ & = \sum_{j = 0}^{m + 1} \dbinom{m + 1}{j} S_j(n) \end{aligned} \]

\(m\ge 1\) 时,假设 \(\forall i \in [0, m)\) 均有 \(S_i(n) = \hat{S}_i(n)\),将 \(S_{m +1}(n)\) 移项:

\[\begin{aligned} n^{m + 1} & = \sum_{j = 0}^{m + 1} \dbinom{m + 1}{j} S_j(n) - S_{m + 1}(n) \\ & = \sum_{j = 0}^m \dbinom{m + 1}{j} S_j(n) \\ & = \sum_{j = 0}^{m - 1} \dbinom{m + 1}{j} S_j(n) + \dbinom{m + 1}{m} S_m(n) \\ & = \sum_{j = 0}^{m - 1} \dbinom{m + 1}{j} \hat{S}_j(n) + (m + 1) S_m(n) \end{aligned} \]

\[\Delta = S_m(n) - \hat{S}_m(n) \]

那么现在就是要证 \(\Delta = 0\)

\[\begin{aligned} n^{m + 1} & = \left[\sum_{j = 0}^{m - 1} \dbinom{m + 1}{j} \hat{S}_j(n) + (m + 1) \hat{S}_m(n) \right] + (m + 1) S_m(n) - (m + 1) \hat{S}_m(n) \\ & = \sum_{j = 0}^m \dbinom{m + 1}{j} \hat{S}_j(n) + (m + 1) \Delta \end{aligned} \]

根据 \(\hat{S}_m(n)\) 的定义将其展开,有

\[n^{m + 1} = \sum_{j = 0}^m \dbinom{m +1}{j} \dfrac{1}{j + 1} \sum_{k = 0}^j \dbinom{j + 1}{k} B_k n^{j + 1 - k} + (m + 1) \Delta \]

\(k\) 改为倒序枚举 并 利用 对称恒等式

\[\dbinom{n}{m} = \dbinom{n}{n - m}, n\in \mathbb{N}, k \in \mathbb{Z} \]

\[\begin{aligned} n^{m +1} & = \sum_{j = 0}^m \dbinom{m + 1}{j} \dfrac{1}{j + 1} \sum_{k = 0}^j \dbinom{j + 1}{j - k} B_{j - k} n^{k + 1} + (m + 1) \Delta \\ & = \sum_{j = 0}^m \dbinom{m + 1}{j} \dfrac{1}{j + 1} \sum_{k = 0}^j \dbinom{j + 1}{k + 1} B_{j - k} n^{k + 1} + (m + 1) \Delta \end{aligned} \]

利用 吸收恒等式

\[\dbinom{r}{k} = \dfrac{r}{k} \dbinom{r - 1}{k - 1}, k \in \mathbb{Z}, k \ne 0 \]

\[\begin{aligned} n^{m + 1} & = \sum_{j = 0}^m \dbinom{m + 1}{j} \dfrac{1}{j + 1} \sum_{k = 0}^j \dfrac{j + 1}{k + 1} \dbinom{j}{k} B_{j - k} n^{k + 1} + (m +1) \Delta \\ & = \sum_{j = 0}^m \dbinom{m + 1}{j} \sum_{k = 0}^j \dfrac{n^{k + 1}}{k + 1} \dbinom{j}{k} B_{j - k} + (m + 1) \Delta \\ & = \sum_{k = 0}^m \dfrac{n^{k + 1}}{k + 1} \sum_{j = k}^m \dbinom{m + 1}{j} \dbinom{j}{k} B_{j - k} + (m + 1) \Delta \end{aligned} \]

利用 三项式版恒等式

\[\dbinom{r}{m} \dbinom{m}{k} = \dbinom{r}{k} \dbinom{r - k}{m - k} \]

\[\begin{aligned} n^{m + 1} & = \sum_{k = 0}^m \dfrac{n^{k + 1}}{k + 1} \sum_{j = k}^m \dbinom{m + 1}{k} \dbinom{m - k + 1}{j - k} B_{j - k} + (m + 1) \Delta \\ & = \sum_{k = 0}^m \dfrac{n^{k + 1}}{k + 1} \dbinom{m + 1}{k} \sum_{j = k}^m \dbinom{m - k + 1}{j - k} B_{j - k} + (m + 1) \Delta \end{aligned} \]

\(j - k\) 改为 \(j\)

\[n^{m + 1} = \sum_{k = 0}^m \dfrac{n^{k + 1}}{k + 1} \dbinom{m + 1}{k} \sum_{j = 0}^{m - k} \dbinom{m - k + 1}{j} B_j + (m + 1) \Delta \]

又根据伯努利数的递归定义

\[\sum_{k = 0}^m \dbinom{m + 1}{k} B_k = [m = 0] \]

\[\begin{aligned} n^{m + 1} & = \sum_{k = 0}^m \dfrac{n^{k + 1}}{k + 1} \dbinom{m + 1}{k} [m - k = 0] + (m + 1) \Delta \\ & = \dfrac{n^{m + 1}}{m + 1} \dbinom{m + 1}{m} + (m + 1) \Delta \\ & = n^{m + 1} + (m + 1) \Delta \end{aligned} \]

至此,我们推出了

\[(m + 1) \Delta = 0 \\ \because m + 1 \ne 0 \\ \therefore \Delta = 0 \]

证毕。

当然,还有一种用 指数生成函数 的更简单的证明方法,就先不证了(

代码实现

显然这东西一般用在有模数的情况下。

下列代码计算的是 \(\sum\limits_{k = 0}^n k^m\),因此需要 n++;

时间复杂度为 \(\Omicron(m^2)\)

暴力计算的时间为 \(\Omicron(n\log m)\),在 \(n\) 巨大时伯努利数有巨大优势,参见 P6271 [湖北省队互测2014]一个人的数论 使用莫反 + 伯努利数或时间复杂度同级的拉格朗日插值。

//18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#define Debug(x) cout << #x << "=" << x << endl
typedef long long ll;
using namespace std;

const int MAXN = 1e4 + 5;
const int N = 1e4;
const int MOD = 1e9 + 7;

int add(int a, int b) {return (a + b) % MOD;}
int mul(int a, int b) {return (ll)a * b % MOD;}

int inv[MAXN], C[MAXN][MAXN], B[MAXN];

void init()
{
	for (int i = 0; i <= N + 1; i++)
	{
		C[i][0] = C[i][i] = 1;
	}
	for (int i = 1; i <= N + 1; i++)
	{
		for (int j = 1; j < i; j++)
		{
			C[i][j] = add(C[i - 1][j], C[i - 1][j - 1]);
		}
	}
	
	inv[1] = 1;
	for (int i = 2; i <= N + 1; i++)
	{
		inv[i] = mul(MOD - MOD / i, inv[MOD % i]);
	}
	
	B[0] = 1;
	for (int m = 1; m <= N; m++)
	{
		int sum = 0;
		for (int k = 0; k < m; k++)
		{
			sum = add(sum, mul(C[m + 1][k], B[k]));
		}
		B[m] = mul(MOD - sum, inv[m + 1]);
	}
}

int qpow(int a, int b)
{
	int base = a, ans = 1;
	while (b)
	{
		if (b & 1)
		{
			ans = mul(ans, base);
		}
		base = mul(base, base);
		b >>= 1;
	}
	return ans;
}

int main()
{
	init(); // 计算伯努利数 
	int n, m;
	scanf("%d%d", &n, &m);
	n++;
	int res = 0;
	for (int k = 0; k <= m; k++)
	{
		res += mul(mul(C[m + 1][k], B[k]), qpow(n, m + 1 - k));
	}
	printf("%d\n", mul(inv[m + 1], res));
	return 0;
}

参考资料

  • [1] 伯努利数. OI-wiki
  • [2] Concrete Mathematics 5.1 BASIC IDENTITIES, 6.5 BERNOULLI NUMBER. Ronald L. Graham, Donald E. Knuth, Oren Patashnik.
posted @ 2022-01-29 20:59  mango09  阅读(204)  评论(0编辑  收藏  举报
-->