【数学】加性函数与积性函数

一、前置知识

艾佛森括号

\[[P] = \begin{cases} 1 & \text{if}\ P\ \text{is true} \\ 0 & \text{otherwise} \end{cases} \]

其中 \(P\) 是一个可真可假的命题。

\([114514\le 1919810] = 1, [-1 \in \mathbb{N}] = 0\)

二、加性函数

加性函数:对于 \(\forall n, m \in \mathbb{N}^*, \gcd(n, m) = 1\),若 \(f(n) + f(m) = f(nm)\),称函数 \(f\) 为加性函数;

注:此处加性函数指数论上的加性函数 \((\rm Additive\ function)\),应与代数中的加性函数 \((\rm Additive\ map)\) 区分。

完全加性函数:对于 \(\forall n, m \in \mathbb{N}^*\),若 \(f(n) + f(m) = f(nm)\),称函数 \(f\) 为完全加性函数。完全加性函数为加性函数的一种。

对于所有的加性函数,根据 \(f(1) = f(1\times 1) = f(1) + f(1)\) 可得 \(f(1) = 0\)

加性函数 \(f\) 满足 \(f\left(\prod\limits_{i=1}^k p_i^{\alpha_i}\right) = \sum\limits_{i=1}^k f(p_i^{\alpha_i})\),完全加性函数 \(f\) 满足 \(f\left(\prod\limits_{i=1}^k p_i^{\alpha_i}\right) = \sum\limits_{i=1}^k f(p_i^{\alpha_i}) = \sum\limits_{i=1}^k f(p_i) \cdot \alpha_i\)


证明时,先证明 \(f(1) = 0\)

然后证明加性需证明 \(\gcd(n,m) = 1\)\(f(n) + f(m) = f(nm)\)(废话);

证明完全加性只需证明 \(f(n) + f(p_i) = f(np_i), p_i\in \mathbb{P}\) 即可,因为证明 \(f(n) + f(m) = f(nm)\) 可将 \(m\) 分解质因数再合并。


常见加性函数

  • \(\omega(n) = \sum\limits_{p\in \mathbb{P}} [p\mid n]\) 表示 \(n\) 的本质不同质因数个数

    证明:

    \(\omega(1) = \sum\limits_{p\in \mathbb{P}} [p\mid 1] = 0\)

    \(\gcd(n, m) = 1\) 时,

    \[\begin{aligned} \omega(nm) & = \sum\limits_{p\in \mathbb{P}} [p\mid nm] \\ & = \sum\limits_{p\in \mathbb{P}} [p\mid n] \lor [p\mid m] \\ & = \sum\limits_{p\in \mathbb{P}} [p\mid n] + \sum\limits_{p\in \mathbb{P}} [p\mid m] - \sum\limits_{p\in \mathbb{P}} [p\mid n] \land [p\mid m] \\ & = \sum\limits_{p\in \mathbb{P}} [p\mid n] + \sum\limits_{p\in \mathbb{P}} [p\mid m] - \sum\limits_{p\in \mathbb{P}} [p\mid \gcd(n, m)] \\ & = \sum\limits_{p\in \mathbb{P}} [p\mid n] + \sum\limits_{p\in \mathbb{P}} [p\mid m] - \sum\limits_{p\in \mathbb{P}} [p\mid 1]\ (\textsf{不互质时不满足})\\ & = \omega(n) + \omega(m) - \omega(1) \\ & = \omega(n) + \omega(m) \end{aligned} \]

  • \(a_1(n) = \sum\limits_{p\in \mathbb{P}} [p\mid n] p\) 表示 \(n\) 的本质不同质因数和

    证明:

    \(a_1(1) = \sum\limits_{p\in \mathbb{P}} [p\mid 1] p = 0\)

    \(\gcd(n, m) = 1\) 时,

    \[\begin{aligned} a_1(nm) & = \sum\limits_{p\in \mathbb{P}} [p\mid nm] p \\ & = \sum\limits_{p\in \mathbb{P}} ([p\mid n] \lor [p\mid m]) p \\ & = \sum\limits_{p\in \mathbb{P}} [p\mid n] p + \sum\limits_{p\in \mathbb{P}} [p\mid m] p - \sum\limits_{p\in \mathbb{P}} ([p\mid n] \land [p\mid m]) p \\ & = a_1(n) + a_1(m) - a_1(1)\ (\textsf{不互质时不满足})\\ & = a_1(n) + a_1(m) \end{aligned} \]

常见完全加性函数

  • \(\Omega(n) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid n} 1(\alpha > 0)\) 表示 \(n\) 的总质因数个数

    证明:

    \(\Omega(1) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid 1} 1 = 0\)

    首先由 \(p_i\in \mathbb{P}\)\(\Omega(p_i) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid p_i} 1 = 1\)

    \[\begin{aligned} \Omega(np_i) & = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid np_i} 1 \\ & = \sum\limits_{p\in \mathbb{P} \land p\ne p_i} \sum\limits_{p^\alpha \mid np_i} 1 + \sum\limits_{p_i^\alpha \mid np_i} 1 \\ & = \sum\limits_{p\in \mathbb{P} \land p\ne p_i} \sum\limits_{p^\alpha \mid n} 1 + \left(\sum\limits_{p_i^\alpha \mid n} 1 + 1\right) \\ & = \left(\sum\limits_{p\in \mathbb{P} \land p\ne p_i} \sum\limits_{p^\alpha \mid n} 1 + \sum\limits_{p_i^\alpha \mid n} 1\right) + 1 \\ & = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid n} 1 + 1 \\ & = \Omega(n) + \Omega(p_i) \end{aligned} \]

  • \(a_0(n) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid n} p\) 表示 \(n\) 的总质因数和

    证明:

    \(a_0(1) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid 1} p = 0\)

    首先由 \(p_i\in \mathbb{P}\)\(a_0(p_i) = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid p_i} p = p_i\)

    \[\begin{aligned} a_0(np_i) & = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid np_i} p \\ & = \sum\limits_{p\in \mathbb{P} \land p\ne p_i} \sum\limits_{p^\alpha \mid np_i} p + \sum\limits_{p_i^\alpha \mid np_i} p_i \\ & = \sum\limits_{p\in \mathbb{P} \land p\ne p_i} \sum\limits_{p^\alpha \mid n} p + \sum\limits_{p_i^\alpha \mid n} p_i + p_i \\ & = \sum\limits_{p\in \mathbb{P}} \sum\limits_{p^\alpha \mid n} p + p_i \\ & = a_0(n) + a_0(p_i) \end{aligned} \]

  • \(\operatorname{pot}_p(n)(p\in \mathbb{P}) = \max\limits_{p^k\mid n}\{k\}\) 表示使得 \(p^k\mid\mid n(p^k\mid n, p^{k + 1}\nmid n)\)\(k\)

    证明:

    \(\operatorname{pot}_p(1) = \max\limits_{p^k\mid 1}\{k\} = 0\)

    首先由 \(p, p_i\in \mathbb{P}\)\(\operatorname{pot}_p p_i = \max\limits_{p^k\mid p_i}\{k\} = [p = p_i]\)

    \(p = p_i\) 时:

    \[\begin{aligned} \operatorname{pot}_p (np_i) & = \operatorname{pot}_{p_i} (np_i) \\ & = \max_{p_i^k\mid np_i}\{k\} \\ & = \max_{p_i^k\mid n}\{k\} + 1 \\ & = \operatorname{pot}_{p_i}(n) + 1 \\ & = \operatorname{pot}_p(n) + 1 \end{aligned} \]

    \(p\ne p_i\) 时:

    \[\begin{aligned} \operatorname{pot}_p(np_i) & = \max_{p^k\mid np_i}\{k\} \\ & = \max_{p^k\mid n}\{k\} \\ & = \operatorname{pot}_p(n) \end{aligned} \]

    所以有

    \[\begin{aligned} \operatorname{pot}_p(np_i) & = \operatorname{pot}_p(n) + [p = p_i] \\ & = \operatorname{pot}_p(n) + \operatorname{pot}_p(p_i) \end{aligned} \]

三、积性函数

积性函数:对于 \(\forall n,m\in\mathbb{N}^*, \gcd(n, m) = 1\), 若 \(f(n)f(m)=f(nm)\),称函数 \(f\) 为积性函数;

完全积性函数:对于 \(\forall n,m\in\mathbb{N}^*\),若 \(f(n)f(m)=f(nm)\),称函数 \(f\) 为完全积性函数。完全积性函数为积性函数的一种。

对于所有的积性函数,根据 \(f(1) = f(1\times 1) = f(1)f(1)\) 可得 \(f(1)=1\)

注意:值恒等于 \(0\) 的函数一般不看作积性函数。

积性函数 \(f\) 满足 \(f\left(\prod\limits_{i=1}^k p_i^{\alpha_i}\right) = \prod\limits_{i=1}^k f(p_i^{\alpha_i})\),完全积性函数 \(f\) 满足 \(f\left(\prod\limits_{i=1}^k p_i^{\alpha_i}\right) = \prod\limits_{i=1}^k f(p_i^{\alpha_i}) = \prod\limits_{i=1}^k f(p_i)^{\alpha_i}\)


加性函数与积性函数的互相转化

若函数 \(f\) 为加性函数,函数 \(g\) 满足 \(g(n) = C^{f(n)}\),其中 \(C\) 为常数。

首先 \(g(1) = C^{f(1)} = C^0 = 1\)

\(\gcd(n, m) = 1\) 时,\(g(n) g(m) = C^{f(n) + f(m)}\),由 \(f\) 为加性函数可得 \(C^{f(n) + f(m)} = C^{f(nm)}\),即 \(g(n) g(m) = g(nm)\),所以函数 \(g\) 为积性函数。

同理,当函数 \(f\) 为完全加性函数时,函数 \(g\) 为完全积性函数。


证明时,先证明 \(f(1) = 1\)

然后证明积性需证明 \(\gcd(n,m) = 1\)\(f(n) f(m) = f(nm)\)

证明完全积性只需证明 \(f(n) f(p_i) = f(np_i), p_i\in \mathbb{P}\) 即可,因为证明 \(f(n) f(m) = f(nm)\) 可将 \(m\) 分解质因数再合并。


常见积性函数

  • 常数 \(k\) 固定时的最大公因数 \(\gcd(k, n)\)

    证明:

    \(\gcd(1, n) = 1\)

    \(\gcd(n, m) = 1\) 时,\(\gcd(k, n) \gcd(k, m) = \gcd(k, nm)\)

  • 欧拉函数 \(\varphi(n) = \sum\limits_{i = 1}^n [\gcd(i, n) = 1]\)

    或将 \(n\) 分解质因数 \(n = \prod\limits_{i = 1}^k p_i^{\alpha_i}\)\(\varphi(n) = n\cdot \prod\limits_{i = 1}^k \dfrac{p_i - 1}{p_i}\)

    证明:

    \(\varphi(1) = \sum\limits_{i = 1}^1 [\gcd(i, 1) = 1] = 1\)

    \(\gcd(n, m) = 1\) 时,

    \[\begin{aligned} \varphi(n) \varphi(m) & = \sum_{i = 1}^n [\gcd(i, n) = 1] \sum_{j = 1}^m [\gcd(j, m) = 1] \\ & = \sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, n) = 1] [\gcd(j, m) = 1] \\ & = \sum_{i = 1}^{nm} [\gcd(i, nm) = 1]\ \left(\textsf{不互质时为} \sum_{i = 1}^{\operatorname{lcm}(n, m)} [\gcd(i, \operatorname{lcm}(n, m)) = 1]\right)\\ & = \varphi(nm)\ (\textsf{不互质时为}\ \varphi(\operatorname{lcm}(n, m))) \end{aligned} \]

  • \(\gamma(n) = (-1)^{\omega(n)}\)

    证明:

    因为 \(\omega\) 为加性函数,\((-1)\) 为常数,所以 \(\gamma\) 为积性函数。

  • 莫比乌斯函数 \(\mu(n) = \begin{cases} 1 & n = 1 \\ 0 & \exists d > 1, d ^ 2 \mid n \\ \gamma(n)& \text{otherwise}\end{cases}\)

    证明:

    \(\mu(1) = 1\)

    \(n, m\) 中有一者为 \(1\) 时,不妨设 \(n = 1\),则 \(\mu(nm) = \mu(m) = 1\cdot \mu(m) = \mu(n) \mu(m)\)

    \(\exists d > 1, d^2 \mid n\) 时,必有 \(\exists d > 1, d^2 \mid nm\),则 \(\mu(nm) = 0 = 0 \cdot \mu(m) = \mu(n) \mu(m)\)

    否则,说明 \(\mu(n) = \gamma(n), \mu(m) = \gamma(m)\),当 \(\gcd(n, m) = 1\) 时,由 \(\gamma(n) \gamma(m) = \gamma(nm)\) 可得 \(\mu(n) \mu(m) = \mu(nm)\)

  • 除数函数 \(\sigma_k(n) = \sum\limits_{d \mid n} d^k\),因数个数函数 \(d(n) = \sum\limits_{d\mid n} 1 = \sigma_0(n)\),因数和函数 \(\sigma(n) = \sum\limits_{d\mid n} d = \sigma_1(n)\)

    证明:

    \(\sigma_k(1) = \sum\limits_{d \mid 1} d ^ k = 1 ^ k = 1\)

    \(\gcd(n, m) = 1\) 时,

    \[\begin{aligned} \sigma_k(n) \sigma_k(m) & = \sum_{d_1\mid n} d_1^k \sum_{d_2\mid m} d_2^k \\ & = \sum_{d_1\mid n} \sum_{d_2\mid m} d_1^k d_2^k \\ & = \sum_{d_1\mid n} \sum_{d_2\mid m} (d_1 d_2)^k \\ & = \sum_{d\mid nm} d^k (\textsf{不互质时不满足}) \\ & = \sigma_k(nm) \end{aligned} \]

常见完全积性函数

  • 逆元 \(a^{-1} \bmod p\)(当逆元存在时)

    证明:

    \[a^{-1} \bmod p = \dfrac{1}{a} \bmod p \\ b^{-1} \bmod p = \dfrac{1}{b} \bmod p \\ \begin{aligned} \therefore (a^{-1} \bmod p) \cdot (b^{-1} \bmod p) & = \left(\dfrac{1}{a} \bmod p\right) \cdot \left(\dfrac{1}{b} \bmod p\right) \\ & = \left(\dfrac{1}{a} \cdot \dfrac{1}{b}\right) \bmod p \\ & = \dfrac{1}{ab} \bmod p \\ & = (ab)^{-1} \bmod p \end{aligned} \]

  • 刘维尔函数 \(\lambda(n) = (-1)^{\Omega(n)}\)

    证明:

    因为 \(\Omega\) 为完全加性函数,\((-1)\) 为常数,所以 \(\lambda\) 为积性函数。

  • 幂函数 \(\operatorname{Id}_k(n) = n ^ k\),常数函数 \(I(n)\)\(\boldsymbol{1}(n) = 1 = \operatorname{Id}_0(n)\),恒等函数 \(\operatorname{Id}(n)=n = \operatorname{Id}_1(n)\)

    证明:

    \(\operatorname{Id}_k(1) = 1^k = 1\)

    \[\begin{aligned} \operatorname{Id}_k(n) \operatorname{Id}_k(m) & = n^k m^k \\ & = (nm)^k \\ & = \operatorname{Id}_k(nm) \end{aligned} \]

  • 单位函数 \(\varepsilon(n) = [n=1]\)

    证明:

    \(\varepsilon(1) = [1 = 1] = 1\)

    \[\begin{aligned} \varepsilon(n) \varepsilon(m) & = [n = 1][m = 1] \\ & = [nm = 1] \\ & = \varepsilon(nm) \end{aligned} \]

四、线性筛

主要是常见积性函数的,加性函数是类似的。

套路是在线性筛中

void pre(int n) // 线性筛积性函数 f
{
	f[1] = 1; // 注意这里,积性函数基本性质
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			f[i] = ???; //质数得直接算
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				f[i * p[j]] = ???; // 特殊情况
				break;
			}
			f[i * p[j]] = f[i] * f[p[j]]; // 一般情况
		}
	}
}

像上面一样分类,原因是当 i % p[j] == 0 ,即 \(p_j\mid i\) 时有 \(\gcd(i, p_j) > 1\),不满足积性,得单独处理;否则有 \(\gcd(i, p_j) = 1\),则 \(f(i)\cdot f(p_j) = f(i\cdot p_j)\)

用线性筛,时间复杂度为 \(\operatorname{O}(n)\)

1. 最大公因数

  • \(i\in \mathbb{P}\)

    \(\gcd(k, i)\) 暴力算是 \(\Omicron(\log n)\) 的,由于 \(\pi(n) \sim \dfrac{n}{\log n}\),所以所有质数暴力算是 \(\Omicron(n)\) 的。当然因为是质数你也可以用 \(\operatorname{if}\)\(\Omicron(1)\) 计算。

  • \(p_j\nmid i\)

    \(\gcd(k, i\cdot p_j) = \gcd(k, i) \cdot \gcd(k, p_j)\)

  • \(p_j\mid i\)

    • \(p_j\mid \dfrac{k}{\gcd(k, i)}\),则 \(\gcd(k, i \cdot p_j) = \gcd(k, i)\cdot p_j\)
    • 否则 \(\gcd(k, i\cdot p_j) = \gcd(k, i)\)
void pre(int n, int k)
{
	gcd[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			if (i % k == 0)
			{
				gcd[i] = k;
			}
			else if (k % i == 0)
			{
				gcd[i] = i;
			}
			else
			{
				gcd[i] = 1;
			}
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				gcd[i * p[j]] = ((k / gcd[i]) % p[j]) ? gcd[i] : (gcd[i] * p[j]);
				break;
			}
			gcd[i * p[j]] = gcd[i] * gcd[p[j]];
		}
	}
}

2. 欧拉函数

  • \(i\in \mathbb{P}\)

    \(\varphi(i) = i - 1\)

  • \(p_j\nmid i\)

    \(\varphi(i\cdot p_j) = \varphi(i) \cdot \varphi(p_j)\)

  • \(p_j\mid i\)

    ​ 原来长这个样子:\(i\cdot \prod\limits_{x = 1}^k \dfrac{p_x - 1}{p_x}\)

    ​ 现在是 \((i\cdot p_j)\cdot \prod\limits_{x = 1}^k \dfrac{p_x - 1}{p_x}\)

    \(\varphi(i\cdot p_j) = \varphi(i) \cdot p_j\)

void pre(int n)
{
	phi[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			phi[i] = i - 1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				phi[i * p[j]] = phi[i] * p[j];
				break;
			}
			phi[i * p[j]] = phi[i] * phi[p[j]];
		}
	}
}

3. 莫比乌斯函数

  • \(i\in \mathbb{P}\)

    \(\mu(i) = -1\)

  • \(p_j\nmid i\)

    \(\mu(i \cdot p_j) = \mu(i)\cdot \mu(p_j)\)

  • \(p_j\mid i\)

    \(p_j^2\mid \mu(i\cdot p_j)\to \mu(i\cdot p_j) = 0\)

void pre(int n)
{
	mu[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			mu[i] = -1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				mu[i * p[j]] = 0;
				break;
			}
			mu[i * p[j]] = mu[i] * mu[p[j]];
		}
	}
}

4. 因数个数函数

由算术基本定理得 \(n = \prod\limits_{i = 1}^k p_i^{\alpha_i}\),那么我们知道 \(d(n) = \prod\limits_{i = 1}^k (\alpha_i + 1)\)

\(num(n)\)\(n\) 的最小质因数的次数,即 \(\alpha_1\)

  • \(i\in \mathbb{P}\)

    \(d(i) = 2\)

    \(num(i) = 1\)

  • \(p_j\nmid i\)

    \(d(i\cdot p_j) = d(i) \cdot d(p_j)\)

    \((i\cdot p_j)\) 的最小质因数为 \(p_j\)\(num(i\cdot p_j) = 1\)

  • \(p_j\mid i\)

    ​ 此时 \(p_j\) 仍为最小质因数,故 \(\alpha_1\) 增加了一,\(d(i\cdot p_j) = \dfrac{d(i)}{\alpha_1 +1} \cdot (\alpha_1 + 2) = \dfrac{d(i)}{num(i) + 1} \cdot (num(i) + 2)\)

    \(num(i\cdot p_j) = num(i) + 1\)

void pre(int n)
{
	d[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			d[i] = 2;
			num[i] = 1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				d[i * p[j]] = d[i] / (num[i] + 1) * (num[i] + 2);
				num[i * p[j]] = num[i] + 1;
				break;
			}
			d[i * p[j]] = d[i] * d[p[j]];
			num[i * p[j]] = 1;
		}
	}
}

5. 因数和函数

首先 \(\sigma(n) = \prod\limits_{i = 1}^k \sum\limits_{j = 0}^{\alpha_i} p_i^{j}\)

\(num(n)\)\(n\) 的最小质因数 \(p_1\)\(\sum\limits_{i = 0}^{\alpha_1} p_1^i\)

  • \(i\in \mathbb{P}\)

    \(\sigma(i) = num(i) = i + 1\)

  • \(p_j\nmid i\)

    \(\sigma(i\cdot p_j) = \sigma(i) \cdot \sigma(p_j)\)

    \(num(i\cdot p_j) = 1 + p_j\)

  • \(p_j\mid i\)

    \(p_1\) 这一项从 \(\sum\limits_{i = 0}^{\alpha_i} p_1^i\) 变成 \(\sum\limits_{i = 0}^{\alpha_i + 1} p_1^i\),那么将原来的集体乘 \(p_1\) 再加 \(1\) 即可。

    \(\sigma(i\cdot p_j) = \dfrac{\sigma(i)}{\sum\limits_{k = 0}^{\alpha_1} p_1^k} \cdot \sum\limits_{k = 0}^{\alpha_1 + 1} p_1^k = \dfrac{\sigma(i)}{num(i)} \cdot [num(i)\cdot p_j + 1]\)

    \(num(i\cdot p_j) = num(i) \cdot p_j + 1\)

UVA1730 Sum of MSLCM(终于有题写了

void pre(int n)
{
	sigma[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			sigma[i] = i + 1;
			num[i] = i + 1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				sigma[i * p[j]] = sigma[i] / num[i] * (num[i] * p[j] + 1);
				num[i * p[j]] = num[i] * p[j] + 1;
				break;
			}
			sigma[i * p[j]] = sigma[i] * sigma[p[j]];
			num[i * p[j]] = 1 + p[j];
		}
	}
}

五、参考资料

posted @ 2022-01-11 20:51  mango09  阅读(1031)  评论(0编辑  收藏  举报
-->